Angkor Wat: Observatory of the Moon and Sun

above: Front side of the main complex by Kheng Vungvuthy for Wikipedia

In her book on Angkor Wat, the Cambodian Hindu-style temple complex, Eleanor Mannikka found an architectural unit in use, of 10/7 feet, a cubit of 20/21 feet (itself an outlier of the Roman module of 24/25 feet, at 125/126 of the 0.96 root Roman foot).

She began to find counted lengths of this unit, as symbols of the astronomical periods (such as 27 29 33) and of the great Yuga time periods proposed within Vedic mythology. Hence Mannikka’s title of Angkor Wat: Time, Space, and Kingship (1996). Whilst the temple was built by the Khymer’s greatest king, their foundation myth indicates the kingly line was adopted by a matriarchal goddess tradition.

Numerically Symbolic Monuments

Interpreting a monument using its metrology can be contentious. For example, in the megalithic period the established position has been that there was no metrological tradition and, to be found proposing one can cause your work to be ignored if not exiled from peer-reviewed journals, as was eventually the case with Prof. Alexander Thom.

At Teotihuacan, Japanese professor Saburo Sugiyama proposed an architectural unit of 83 centimeters was used, since the monumental complex would then clearly have numbers of these units corresponding to significant celestial periods, as if periods had been counted out within the City: the eclipse half year of 173 days at the Moon Pyramid, the Tzolkin of 260 days at the Sun Pyramid, and the Venus synod of 584 days at the Quetzalcoatl pyramid’s compound. More such day lengths and a well-known harmonic matrix were also seen in my Harmonic Origins of the World.

Astronomical counting within Teotihuacan (adapted from fig. 8.9)

Sugiyama did not reply to my message that his Teotihuacan Measuring Unit of 0.83 meters was the 2.72 foot length of Thom’s megalithic yard, implying some connection between Olmec/Maya Mexico and megalithic Europe. This was probably not welcome. Wikipedia’s editors of the “Megalithic Yard” page also objected to my mentioning this since it was I that had noticed this correspondence.

Over a 20 year period, Eleanor Mannikka found a numbers that were symbolic** or actual long counts of the solar and lunar years. In her thesis, these numbers were embodied as a ritual background for visiting pilgrims, whose steps corresponded to numbers – the megalithic yard being a metrological step of 2.5 feet. Her eventual counts emerged by a protocol that skipped thresholds, ran beyond, or started before a threshold, the counts were being human walkways but also excellent surfaces for doing accurate metrology.

**Her rule-based system that revealed numbers may well be a later function of the eventual monument, made to correspond with the numbers found in Hindu epic stories, since these are lavishly illustrated within extensive bas-reliefs, visible to pilgrims, depicting major Hindu myths. Statues of the gods punctuate the building’s many walkways to express the Indian practice of parikrama, of circumnavigating holy sites (such as around Mount Kailash or the great dome of Sanchi).

The Temple as AN Observatory

The symbolic use of numbers could only have become established through cosmic measurement in which astronomy (before our own) counted the actual numbers of days or months between repeating cycles of celestial alignment, and the differences and ratios between these. That is, ancient symbolic numbers originated in the Sky, where number-laden events measured in days or months generate whole numbers that were only then held to be sacred. One might think Angkor Wat too recent to have been constructed to suit this ancient sort of astronomical work. But the temple’s explicit orientation, to the west, was suited to just that. This made the temple perfect for observing and counting all sorts of time-counts, repeating measurements made millennia before using megalithic monuments.

That is, Angkor Wat is a current-era megalithic monument to the sky gods, these illustrated using the famous tableau of Vedic and later Indian myths.

The sun and moon set to the west**, each having a maximum range north or south of west. The sun at winter and summer solstice defines a fixed range within the solar year, depending on the latitude of a given site. In contrast, the Moon ranges over the horizon when setting over one orbital period of 27 1/3rd days. However, the moons orbit is skew to the sun’s path (ecliptic) so that the moon rises above and below, except at its nodes where eclipses can take place. These nodes move backwards so that the moon’s range on the horizon expands and contracts over 18.618 solar years.

**Looking west is very convenient since the sun or moon approach the horizon rather than suddenly appearing as they do in the east.

As a consequence, there are seven key points on the western horizon, the maximum standstill to north and south, the minimum standstill to north and south, the solstice extremes of the sun in summer (North) and winter (South), plus the equinox sunrise**. It is possible to calculate these alignments for the virtually flat terrain of Cambodia as in Figure 2.

**The Equinox sunset is a very exact point to measure since the sun appears to move rapidly on the horizon, between sunsets.

Figure 2 The alignments of Sun and Moon to the west (Left) around 1000 CE at the latitude of Angkor Wat using the Processing.org framework.

The notion of alignments seems to throw light upon the highly specific elements of Angkor Wat (see figure 3), if these alignments were viewed from the north eastern and south eastern corners of the raised temple enclosure.

Figure 3 Viewing the alignments of Sun and Moon, to the west (on Left), from the eastern corners.

There is a natural north-south symmetry, where the alignments to the solstice cross in the pream cruciform (see figure 4). The punctuation of the towers of the temple, seen from the eastern corners, would provide landmarks to calibrate the movement of (a) the sun in the year and (b) the moon within the lunar orbit, as the 18.6 year nodal movement expands and contracts the lunar range.

Figure 4 The Alignments seen within the plan of the temple complex.

The cruciform terrace outside the walls and nine fold cruciform within, could relate to the crossings of alignment and the periodicity of these cycles which would be countable in days using units of length.

The maximum moon alignments near 1000 BCE were 30 north and south or west, and one can plot those alignments over a flat Cambodia to the boundaries with Thailand which are, in contrast, significantly mountainous (see dark green areas at end of yellow alignments in Figure 5.

Figure 5 Google Earth view of the mountains at the end of both maximum moon alignments.

Parallels with the Megalithic near Carnac

The basic idea of such an observatory is a stone square instead of a stone circle. Alignments can be built-in, between back-sight observation points and fore-sight marker stones, marking the horizon location of an extreme event such as solstice. An observatory location can also look to an horizon event for which a distinct natural feature exists on the horizon, from that location. The stone perimeters of Carnac, called cromlechs, are various shapes but at Kerlescan, the cromlech is a rounded square, where the western perimeter is concave towards the east. That is, it faced rising events on the eastern horizon instead of setting events to the west.

Figure 6 Alexander Thom’s survey of the Kerlescan cromlech.

Otherwise, the “setup” is conducive to the observation of the sun and moon possible at Angkor Wat. Below I show how the observatory could work for the epoch 4000 BCE. The red lines are solar extremes and green lines are lunar maximum and minimum extremes. Equinoctial events at Spring and Autumn complete the inherently seven-fold nature of such phenomena.

Figure 7 Possible use of the Kerlescan cromlech, as an observatory facing east rather than west (at Angkor Wat).

Walking on the Moon

There are plans to walk again on the moon (above is a NASA visualization), but there is a sense in which the surface of the moon belongs to the surface of the earth, since the earth’s circumference is 4 times the mean diameter of the earth, minus the moon’s circumference.

The Earth and Moon were formed out of an early collision which left the two bodies in an unusual relationship to one another, in more ways than one. Here we discuss the diameter (and circumference) of each body as a sphere as being in the ratio 11 to 3. The diameter of the Moon is 2160 miles so that the common unit is 720 miles (the harmonic constant) and the diameter of the spherical mean earth would be 7920 miles.

Continue reading “Walking on the Moon”

The Knowing of Time by the Megalithic

The human viewpoint is from the day being lived through and, as weeks and months pass, the larger phenomenon of the year moves the sun in the sky causing seasons. Time to us is stored as a calendar or year diary, and the human present moment conceives of a whole week, a whole month or a whole year. Initially, the stone age had a very rudimentary calendar, the early megalith builders counting the moon over two months as taking around 59 days, giving them the beginning of an astronomy based upon time events on the horizon, at the rising or setting of the moon or sun. Having counted time, only then could formerly unnoticed facts start to emerge, for example the variation of (a) sun rise and setting in the year on the horizon (b) the similar variations in moon rise and set over many years, (c) the geocentric periods of the planets between oppositions to the sun, and (d) the regularity between the periods when eclipses take place. These were the major types of time measured by megalithic astronomy.

The categories of astronomical time most visible to the megalithic were also four-fold as: 1. the day, 2. the month, 3. the year, and 4. cycles longer than the year (long counts).

The day therefore became the first megalithic counter, and there is evidence that the inch was the first unit of length ever used to count days.

In the stone age the month was counted using a tally of uneven strokes or signs, sometimes representing the lunar phase as a symbol, on a bone or stone, and without using a constant unit of measure to represent the day.

Once the tally ran on, into one or more lunar or solar years, then the problem of what numbers were would become central as was, how to read numbers within a length. The innovation of a standard inch (or digit) large numbers, such as the solar year of 365 days, became storable on a non-elastic rope that could then be further studied.

The 365 days in he solar year was daunting, but counting months in pairs, as 59 day-inch lengths of rope, allowed the astronomers to more easily visualize six of these ropes end-to-end, leaving a bit left over, on the solar year rope, of 10 to 11 days. Another way to look at the year would then be as 12 full months and a fraction of a month. This new way of seeing months was crucial in seeing the year of 365 days as also, a smaller number of about 12 and one third months.

Twelve “moons” lie within the solar year, plus some days.

And this is where it would have become obvious that, one third of a month in one year adds up, visually, to a full month after three years. This was the beginning of their numerical thinking, or rationality, based upon counting lengths of time; and this involved all the four types of time:

  1. the day to count,
  2. the month length to reduce the number of days in the day count,
  3. the solar year as something which leaves a fraction of a month over and finally,
  4. the visual insight that three of those fractions will become a whole month after three full solar years, that is, within a long count greater than the year.

To help one understand this form of astronomy, these four types of time can be organized using the systematic structure called a tetrad, to show how the activity of megalithic astronomy was an organization of will around these four types of time.

J.G. Bennett’s version of Aristotle’s tetrad.

The vertical pair of terms gives the context for astronomical time on a rotating planet, the GROUND of night and a day, for which there is a sky with visible planetary cycles which only the tetrad can reveal as the GOAL. The horizontal pair of terms make it possible to comprehend the cosmic patterns of time through the mediation of the lunar month (the INSTRUMENT), created by a combination of the lunar orbit illuminated by the Sun during the year, which gave DIRECTION. Arguably, a stone age culture could never have studied astronomical time without Moon and Sun offering this early aggregate unit of the month, then enabling insights of long periods, longer than the solar year.

The author (in 2010) at Le Manio Quadrilateral
where megalithic day-inch counting is clearly indicated after a theodolite survey,
over three years of its southern curb (to the left) of 36-37 stones.

The Manio Quadrilateral near Carnac demonstrates day-inch counting so well that it may itself have been a teaching object or “stone textbook” for the megalithic culture there, since it must have been an oral culture with no writing or numeracy like our own. After more than a decade, the case for this and many further megalithic innovations, in how they could calculate using rational fractions of a foot, allowed my latest book to attempt a first historical account of megalithic influences upon later history including sacred building design and the use of numbers as sacred within ancient literature.

The “output” of the solar count over three years is seen at the Manio Quadrilateral as a new aggregate measure called the Megalithic Yard (MY) of 32.625 (“32 and five eighths”), the solar excess over three lunar years (of 36 months). Repeating the count using the new MY unit, to count in months-per-megalithic yard, gave a longer excess of three feet (36 inches), so that the excess of the solar year over the lunar could then be known as a new unit in the history of the world, exactly one English foot. It was probably the creation of the English foot, that became the root of metrology throughout the ancient and historical world, up until the present.

The southern curb (bottom) used stones to loosely represent months from point P while, in inches, the distance to point Q’ was three solar years.

This theme will be continued in this way to explore how the long counts of Sun, Moon, and Planets, were resolved by the megalithic once this activity of counting was applied, the story told in my latest book.

Counting Perimeters

above: a slide from my lecture at Megalithomania in 2015

We know that some paleolithic marks counted in days the moon’s illuminations, which over two cycles equal 59 day-marks. This paved the way for the megalithic monuments that studied the stars by pointing to the sky on the horizon; at the sun and moon rising to the east and setting in the west. It was natural then to them to see the 12 lunar months (6 x 59 = 354 day-marks) within the seasonal year (about 1/3 of a month longer than 12) between successive high summers or high winters.

Lunar eclipses only occur between full moons and so they fitted perfectly the counting of the repetitions of the lunar eclipses as following a fixed pattern, around six months apart (actually 5.869 months, ideally 173.3 day-marks apart). The accuracy of successive eclipse seasons to the lunar month can then improve over longer counts so that, after 47 lunar months, one can expect an eclipse to have occurred about one and a half days earlier. This appears to be the reason for the distance between the megalithic monuments of Crucuno, its dolmen and and its rectangle, which enabled simultaneous counting of days as Iberian feet and months as 27 foot units, at the very end of the Stone Age.

Continue reading “Counting Perimeters”

The Best Eclipse Cycle

The anniversary of the Octon (4 eclipse years in 47 lunar months) did not provide similar eclipses and so, by counting more than four, the other motions of the Moon could also form part of that anniversary. This is especially true of the anomalistic month, which changes the changes the apparent size of the Moon within its phase cycle, recreate the same type of lunar eclipse after nineteen eclipse years. This 18 year and 11 day period is now taken as the prime periodicity for understanding eclipse cycles, called the Saros period – known to the Babylonian . The earliest discovered historical record of what is known as the saros is by Chaldean (neo-Babylonian) astronomers in the last several centuries BC.

The number of full moons between lunar eclipses must be an integer number, and in 19 eclipse years there are a more accurate 223 lunar months than with the 47 of the Octon. This adds up to 6585.3 days but the counting of full moon’s is obviously ideal as yielding near-integer numbers of months.

We noted in a past post that the anomalistic month (or AM), regulating the moon’s size at full moon, has a geometrical relationship with eclipse year (or EY) in that: 4 AM x pi (of 3.1448) equals the 346.62 days of the eclipse year as the circumference. Therefore, in 19 EY the diameter of a circle of circumference 19 x 346.62 days must be 4 x 19 AM so that , 76 AM x pi equals 223 lunar months, while the number of AM in 223 lunar months must be 239; both 223 and 239 being prime numbers.

Continue reading “The Best Eclipse Cycle”

Vectors in Prehistory 2

In early education of applied mathematics, there was a simple introduction to vector addition: It was observed that a distance and direction travelled followed by another (different) distance and direction, shown as a diagram as if on a map, as directly connected, revealed a different distance “as the crow would fly” and the direction from the start.

The question could then be posed as “How far would the plane (or ship) be, from the start, at the end”. This practical addition applies to any continuous medium, yet the reason why took centuries to fully understand using algebraic math, but the presence of vectors within megalithic counted structures did not require knowledge of why vectors within geometries like the right triangle, were able to apply vectors to their astronomical counts.

Continue reading “Vectors in Prehistory 2”