Megalithic Measurement of Jupiter’s Synodic Period

image: Jupiter with now-shrunken red spot – Hubble Space Telescope

Though megalithic astronomers could look at the sky, their measurement methods were only accurate using horizon events. Horizon observations of solstice sunrise/set each year, lunar extreme moonrises or settings (over 18.6 years) allowed them to establish the geometrical ratios between these and other time periods, including the eclipse cycles. In contrast, the synod of Jupiter is measured between its loops in the sky, upon the backdrop of stars, in which Jupiter heads backwards each year as the earth passes between itself and the Sun. That is, Jupiter goes retrograde relative to general planetary direction towards the east. Since such retrograde movement occurs over 120 days, Jupiter will set 120 times whilst moving retrograde. This allowed megalithic astronomy to study the retrograde Jupiter, but only when the moon is conjunct with Jupiter in the night sky and hence will set with Jupiter at its own setting.

Figure 1 The metamorphosis of loop shape when Jupiter is in different signs of the Zodiac
Continue reading “Megalithic Measurement of Jupiter’s Synodic Period”

Megalithic application of numeric time differences

Natural time periods between celestial phenomena hold powerful insights into the numerical structure of time, insights which enabled the megalith builders to access an explanation of the world unlike our own. When looking at two similarly-long time-periods, the megalithic focussed on the difference between them, these causing the two periods to slide in and out of phase, generating a longer period in which the two celestial bodies exhibit a complete ensemble of variation, in their relationship to each other. This slippage of phase between celestial periods holds a pattern purely based upon number, hidden from the casual observer who does not study them in this way. Such numerical patterns are only fully revealed through counting time and analysing the difference between periods numerically.

For example, the solar year is longer than the lunar year by 10 and 7/8 days (10.875 days) and three solar years are longer than three lunar years by three times 10.875 days, that is by 32 and 5/8th days (32.625 days), which is 32/29 of a single lunar month of 29.53 days.

The earliest and only explicit evidence for such a three year count has been found at Le Manio’s Quadrilateral near Carnac (circa 4,000 BCE in Brittany, France) used the inches we still use to count days, a “day-inch” unit then widespread throughout later megalithic monuments and still our inch, 1/12 of the foot [Heath & Heath. 2011]. The solar-lunar difference found there over three years was 32.625 day-inches, is probably the origin of the unit we call the megalithic yard and the megalith builders appear to have adopted this differential length, between a day-inch count over three lunar and solar years, in building many later monuments.

Figure 1 (in plan above) The monumentalising of a three-year day inch count at Le Manio as a right triangle based upon its southern kerb (in profile below), automatically generating the megalithic yard.
Continue reading “Megalithic application of numeric time differences”

Lunar Counting from Crucuno Dolmen to its Rectangle

A fuller treatment of this article can now be found in
Sacred Geometry: Language of the Angels (2021).

Figure 1 The entrance of Crucuno’s cromlech, which opens to the south-east
[Summer Solstice, 2007]

It is not immediately obvious the Crucuno dolmen (figure 1) faces the Crucuno rectangle about 1100 feet to the east. The role of dolmen appears to be to mark the beginning of a count. At Carnac’s Alignments there are large cromlechs initiating and terminating the stone rows which, more explicitly, appear like counts. The only (surviving) intermediate stone lies 216 feet from the dolmen, within a garden and hard-up to another building, as with the dolmen (see figure 2). This length is interesting since it is twice the longest inner dimension of the Crucuno rectangle, implying that lessons learned in interpreting the rectangle might usefully apply when interpreting the distance at which this outlier was placed from the dolmen. Most obviously, the rectangle is 4 x 27 feet wide and so the outlier is 8 x 27 feet from the dolmen.

Continue reading “Lunar Counting from Crucuno Dolmen to its Rectangle”