## Old Yard’s Mastery of the Square Root of 2

The old yard was almost identical to the yard of three feet, but just one hundredth part smaller at 2.87 feet. This gives its foot value as 99/100 feet, a value belonging to a module very close to the English/Greek which defines one relative to the rational ratios of the Historical modules.

So why was this foot and its yard important, in the Scottish megalithic and in later, historical monuments?

If one forms a square with side equal to the old yard, that square can be seen as containing 9 square feet, and each of those has side length 99/100 feet. This can be multiplied by the rough approximation to 1/√ 2 of 5/7 = 0.714285, to obtain a more accurate 1/√ 2 of 99/140 = 0.70714285.

Continue reading “Old Yard’s Mastery of the Square Root of 2”

## Models of Time within Henges and Circles

image: composite, see figure 1 below

Presenting important information clearly often requires the context be shown, within a greater whole. Map makers often provide an inset, showing a larger map at a smaller scaling (as below, of South America) within a detailed map (of Southern Mexico).

Megalithic astronomy generated maps of time periods, using lines, triangles, diameters and perimeters, in which units of measure represented one day to an inch or to a foot. To quantify these periods, alignments on the horizon pointing to sun and moon events were combined with time counting between these events,where days, accumulated as feet or inches per day, form a counted length. When one period was much longer than another, the shorter could be counted in feet per day and the smaller in inches per so that both counts could share the same monumental space. In this article we find the culture leading to megalithic astronomy and stone circles, previously building circular structures called henges, made of concentric banks and ditches.

Continue reading “Models of Time within Henges and Circles”

## Palsson’s Sacred Image in Iceland

Extracted from The Structure of Metrology, its Classification and Application (2006) by John Neal and notes by Richard Heath for Bibal Group, a member of which, Petur Halldorsson, has taken this idea further with more similar patterns on the landscape, in Europe and beyond. Petur thinks Palsson’s enthusiasm for Pythagorean ideas competed with what was probably done to create this landform, as he quotes “Every pioneer has a pet theory that needs to be altered through dialogue.” Specifically, he “disputes the Pythagorean triangle in Einar’s theories. I doubt it appeared in the Icelandic C.I. [Cosmic Image] by design.” Caveat Emptor. So below is an example of what metrology might say about the design of this circular landform.

Continue reading “Palsson’s Sacred Image in Iceland”

## Megalithic Measurement of Jupiter’s Synodic Period

image: Jupiter with now-shrunken red spot – Hubble Space Telescope

Though megalithic astronomers could look at the sky, their measurement methods were only accurate using horizon events. Horizon observations of solstice sunrise/set each year, lunar extreme moonrises or settings (over 18.6 years) allowed them to establish the geometrical ratios between these and other time periods, including the eclipse cycles. In contrast, the synod of Jupiter is measured between its loops in the sky, upon the backdrop of stars, in which Jupiter heads backwards each year as the earth passes between itself and the Sun. That is, Jupiter goes retrograde relative to general planetary direction towards the east. Since such retrograde movement occurs over 120 days, Jupiter will set 120 times whilst moving retrograde. This allowed megalithic astronomy to study the retrograde Jupiter, but only when the moon is conjunct with Jupiter in the night sky and hence will set with Jupiter at its own setting.

Continue reading “Megalithic Measurement of Jupiter’s Synodic Period”

## Megalithic application of numeric time differences

Natural time periods between celestial phenomena hold powerful insights into the numerical structure of time, insights which enabled the megalith builders to access an explanation of the world unlike our own. When looking at two similarly-long time-periods, the megalithic focussed on the difference between them, these causing the two periods to slide in and out of phase, generating a longer period in which the two celestial bodies exhibit a complete ensemble of variation, in their relationship to each other. This slippage of phase between celestial periods holds a pattern purely based upon number, hidden from the casual observer who does not study them in this way. Such numerical patterns are only fully revealed through counting time and analysing the difference between periods numerically.

For example, the solar year is longer than the lunar year by 10 and 7/8 days (10.875 days) and three solar years are longer than three lunar years by three times 10.875 days, that is by 32 and 5/8th days (32.625 days), which is 32/29 of a single lunar month of 29.53 days.

The earliest and only explicit evidence for such a three year count has been found at Le Manio’s Quadrilateral near Carnac (circa 4,000 BCE in Brittany, France) used the inches we still use to count days, a “day-inch” unit then widespread throughout later megalithic monuments and still our inch, 1/12 of the foot [Heath & Heath. 2011]. The solar-lunar difference found there over three years was 32.625 day-inches, is probably the origin of the unit we call the megalithic yard and the megalith builders appear to have adopted this differential length, between a day-inch count over three lunar and solar years, in building many later monuments.

Continue reading “Megalithic application of numeric time differences”