## Megalithic Measurement of Jupiter’s Synodic Period

Though megalithic astronomers could look at the sky, their measurement methods were only accurate using horizon events. Horizon observations of solstice sunrise/set each year, lunar extreme moonrises or settings (over 18.6 years) allowed them to establish the geometrical ratios between these and other time periods, including the eclipse cycles. In contrast, the synod of Jupiter is measured between its loops in the sky, upon the backdrop of stars, in which Jupiter heads backwards each year as the earth passes between itself and the Sun. That is, Jupiter goes retrograde relative to general planetary direction towards the east. Since such retrograde movement occurs over 120 days, Jupiter will set 120 times whilst moving retrograde. This allowed megalithic astronomy to study the retrograde Jupiter, but only when the moon is conjunct with Jupiter in the night sky and hence will set with Jupiter at its own setting.

Continue reading “Megalithic Measurement of Jupiter’s Synodic Period”

## Story of Three Similar Triangles

first published on 24 May 2012

Interpreting Lochmariaquer in 2012, an early discovery was of a near-Pythagorean triangle with sides 18, 19 and 6. This year I found that triangle as between the start of the Erdevan Alignments near Carnac. But how did this work on cosmic N:N+1 triangles get started?

Robin Heath’s earliest work, A Key to Stonehenge (1993) placed his Lunation Triangle within a sequence of three right-angled triangles which could easily be constructed using one megalithic yard per lunar month. These would then have been useful in generating some key lengths proportional to the lunar year:

• the number of lunar months in the solar year,
• the number of lunar orbits in the solar year and
• the length of the eclipse year in 30-day months.

all in lunar months. These triangles are to be constructed using the number series 11, 12, 13, 14 so as to form N:N+1 triangles (see figure 1).

n.b. In the 1990s the primary geometry used to explore megalithic astronomy was N:N+1 triangles, where N could be non-integer, since the lunation triangle was just such whilst easily set out using the 12:13:5 Pythagorean triangle and forming the intermediate hypotenuse to the 3 point of the 5 side. In the 11:12 and 13:14 triangles, the short side is not equal to 5.

Continue reading “Story of Three Similar Triangles”

## Erdeven Alignment’s counting of Metonic and Saros Periods

The word Alignment is used in France to describe its stone rows. Their interpretation has been various, from being an army turned to stone (a local myth) to their use, like graph paper, for extrapolation of values (Thom). That stone rows were alignments to horizon events gives a partial but useful explanation, since menhirs (or standing stones) do form a web of horizon alignments to solstice sun and to the moon’s extreme rising and setting event, at maximum and minimum standstill. At Carnac the solstice sun was aligned to the diagonal of the 4 by 3 rectangle and maximum and minimum standstill moon aligned to the diagonal of a single or double square, respectively.

It seems quite clear today that stone rows at least represented the counting of important astronomical time periods. We have seen at Crocuno that eclipse periods, exceeding the solar year, are accompanied by some rectalinear structures (Le Manio, Crucuno, Kerzerho) which embody counting in miniature, as if to record it, and it has been observed that cromlechs (or large stone kerb monuments) were built at the ends of the long stone rows of Carnac and Erdeven. Sometimes, a cromlech initiated a longer count,with or without stone rows, that ended with a rectangle (Crucuno). The focus on counting time naturally reveals a vernacular quite unique to this region and epoch. We have seen that the Kerzerho alignments were at least a 4 by 3 rectangle which recorded the 235 lunar months in feet along its diagonal to midsummer solstice sunset. After that rectangle there follows a massive Alignment of stone rows to the east,ending after 2.3 km having gradually changed their bearing to 15 degrees south of east. Just above the alignments lies a hillock with multiple dolmens and a north-south stone row (Mané Braz) whilst below its eastern extremity lies the tumulus and dolmen,”T-shaped passage-grave” (Burl. Megalithic Brittany. 196) called Mané Groh.

Continue reading “Erdeven Alignment’s counting of Metonic and Saros Periods”