The Roof Axe as Circumpolar Device

This article explores the use of axe motifs within a form of carved schematic art unique to the megalithic monuments near Carnac, southern Brittany, France. First published in February 2014.

A diagram found on the underside of the capstone of a chambered dolmen called Kercado (see figure 1) appears to hold metrological and astronomical meanings. Classified as a type of AXE, local axe motifs are said to have three distinct forms (a) triangular blades, (b) hafted axes and (c) the Mane Ruthual type [Twohig, 1981[1]]. 

Figure 1 Well preserved sculpted-stone axe-head motif in Kercado dolmen

Types b and c are often found in the singular on the undersides to roof slabs and in the case of form (b), the hafted axe, I have attributed its display below the roof slab of Table des Marchands at Locmariaquer (inset right) as being used to represent the north pole between 5000 and 4000 BC, at a time when there was no star near to the pole itself. The abstract point of the north pole, the rotational axis of the earth, is shown as a loop attached to the base of the axe haft, whilst the axe head then represented a chosen circumpolar star, as this rotates counter-clockwise in the northern sky, at the fixed distance of the haft from the pole itself. Note how compatible this idea of an axe ploughing the northern skies is to our own circumpolar constellation, The Plough. Note also that the eastern horizon moves through the equatorial stars at the same angular rate as the marker star moves around the north pole.

Continue reading “The Roof Axe as Circumpolar Device”

Similarities between Le Menec and Erdevan Alignments

In a previous article, the 7,500 foot-long Erdevan alignments were seen to have been a long count of the Saros period of 19 eclipse years versus the distance to Mane Groh dolmen of 19 solar years, this probably conceptualized as an 18-19-6 near-Pythagorean triangle, whose inner angle is the bearing from east of Mané Groh. However, the path directly east caused the actual alignments, counting the Saros, to veer south to miss the hill of Mané Bras.

It has been remarked that the form of the northern alignments of Edeven were similar to those starting at Le Menec’s egg-shaped stone circle 4.25 miles away, at a bearing 45 degrees southeast. Whilst huge gaps have been caused in those of Edeven by agriculture, the iconic Le Menec alignments seem to have fared better than the alignments of Kermario, Kerlescan and Petit Menec which follow it east, these being known as the Carnac Alignments above the town of that name.

One similarity between alignments is the idea of starting and terminating them with ancillary structures such as cromlechs (stone kerb monuments), such as the Le Menec egg and, despite road incursion, a3-4-5 structure similar to Crucuno, aligned to the midsummer sunset by a length 235 feet long. This is the number of lunar months in the 19 year Metonic period and is factored 5 times 47. Another similarity may be seen in Cambray’s 1805 drawing of these Kerzerho alignments, at the head of ten stone rows marching east (figure 1).

Figure 1 Cambrey’s 1805 engraving of Kerzerho’s western extremity of the Erdeven alignments showing the stone rows now lost to agriculture.
Continue reading “Similarities between Le Menec and Erdevan Alignments”

Erdeven Alignment’s counting of Metonic and Saros Periods

first published in March 2018

The word Alignment is used in France to describe its stone rows. Their interpretation has been various, from being an army turned to stone (a local myth) to their use, like graph paper, for extrapolation of values (Thom). That stone rows were alignments to horizon events gives a partial but useful explanation, since menhirs (or standing stones) do form a web of horizon alignments to solstice sun and to the moon’s extreme rising and setting event, at maximum and minimum standstill. At Carnac the solstice sun was aligned to the diagonal of the 4 by 3 rectangle and maximum and minimum standstill moon aligned to the diagonal of a single or double square, respectively.

It seems quite clear today that stone rows at least represented the counting of important astronomical time periods. We have seen at Crocuno that eclipse periods, exceeding the solar year, are accompanied by some rectalinear structures (Le Manio, Crucuno, Kerzerho) which embody counting in miniature, as if to record it, and it has been observed that cromlechs (or large stone kerb monuments) were built at the ends of the long stone rows of Carnac and Erdeven. Sometimes, a cromlech initiated a longer count,with or without stone rows, that ended with a rectangle (Crucuno). The focus on counting time naturally reveals a vernacular quite unique to this region and epoch. We have seen that the Kerzerho alignments were at least a 4 by 3 rectangle which recorded the 235 lunar months in feet along its diagonal to midsummer solstice sunset. After that rectangle there follows a massive Alignment of stone rows to the east,ending after 2.3 km having gradually changed their bearing to 15 degrees south of east. Just above the alignments lies a hillock with multiple dolmens and a north-south stone row (Mané Braz) whilst below its eastern extremity lies the tumulus and dolmen,”T-shaped passage-grave” (Burl. Megalithic Brittany. 196) called Mané Groh.


Figure 1 The intermittent extent of the Erdevan Alignments, and associated dolmens
Continue reading “Erdeven Alignment’s counting of Metonic and Saros Periods”

Kerherzo Rectangle near Erdeven & Crucuno

first published in March 2018

In 1973, Alexander Thom found the Crucuno rectangle to have been “accurately placed east and west” by its megalithic builders, and “built round a rectangle 30 MY [megalithic yards] by 40 MY” and that “only at the latitude of Crucuno could the diagonals of a 3, 4, 5 rectangle indicate at both solstices the azimuth of the sun rising and setting when it appears to rest on the horizon.” In a recent article I found metrology was used between the Crucuno dolmen (within Crucuno) and the rectangle in the east to count 47 lunar months, since this closely approximates 4 eclipse years (of 346.62 days) which is the shortest eclipse prediction period available to early astronomers.


Figure 1 Two key features of Crucuno’s Rectangle

About 1.22 miles northwest lie the alignments sometimes called Erdeven, on the present D781 before the hamlet Kerzerho – after which hamlet they were named by Archaeology. These stone rows are a major complex monument but here we consider only the section beside the road to the east. Unlike the Le Manec Kermario and Kerlestan alignments which start north of Carnac, Erdevan’s alignments are, like the Crucuno rectangle accurately placed east and west. 


Figure 2 Two stones, angled to the diagonal of a 3-4-5 triangle 235 feet from north west stone and setting sun at summer solstice
Continue reading “Kerherzo Rectangle near Erdeven & Crucuno”

Number Symbolism at Table des Marchands

Table des Marchands, a dolmen at Lochmariaquer, can explain how the Megalithic came to factorise 945 days as 32 lunar months by looking at the properties of the numbers three, four and five. At that latitude, the solstice angle of the sun on the horizon shone along the 5-side of a 3-4-5 triangle to east and west, seen clearly at the Crucuno Rectangle [post2post id=”237″].

Before numbers were individually notated (as with our 3, 4 and 5 rather than |||, |||| and |||||) and given positional notation (like our decimal seen in 945 and 27), numbers were lengths or marks and, when marks are compared to accurately measured lengths measured out in inches, feet, yards, etc. then each vertical mark would naturally have represented a single unit of length. This has not been appreciated as having been behind marks like the cuneiform for ONE; that it probably meant “one unit of length”.


Figure 1 The end and cap stone inside the dolmen Table des Marchands in which the elementary numbers in columns and rows perhaps inspired its attribution to the accounts of merchants
Locmariaquer (Morbihan, Bretagne, France) : la Table des Marchand, interieur.
Continue reading “Number Symbolism at Table des Marchands”

Megalithic application of numeric time differences

Natural time periods between celestial phenomena hold powerful insights into the numerical structure of time, insights which enabled the megalith builders to access an explanation of the world unlike our own. When looking at two similarly-long time-periods, the megalithic focussed on the difference between them, these causing the two periods to slide in and out of phase, generating a longer period in which the two celestial bodies exhibit a complete ensemble of variation, in their relationship to each other. This slippage of phase between celestial periods holds a pattern purely based upon number, hidden from the casual observer who does not study them in this way. Such numerical patterns are only fully revealed through counting time and analysing the difference between periods numerically.

For example, the solar year is longer than the lunar year by 10 and 7/8 days (10.875 days) and three solar years are longer than three lunar years by three times 10.875 days, that is by 32 and 5/8th days (32.625 days), which is 32/29 of a single lunar month of 29.53 days.

The earliest and only explicit evidence for such a three year count has been found at Le Manio’s Quadrilateral near Carnac (circa 4,000 BCE in Brittany, France) used the inches we still use to count days, a “day-inch” unit then widespread throughout later megalithic monuments and still our inch, 1/12 of the foot [Heath & Heath. 2011]. The solar-lunar difference found there over three years was 32.625 day-inches, is probably the origin of the unit we call the megalithic yard and the megalith builders appear to have adopted this differential length, between a day-inch count over three lunar and solar years, in building many later monuments.


Figure 1 (in plan above) The monumentalising of a three-year day inch count at Le Manio as a right triangle based upon its southern kerb (in profile below), automatically generating the megalithic yard.
Continue reading “Megalithic application of numeric time differences”