Iceland’s Model of the Earth’s Meridian

Einar Palsson [1, at end] saw that the myths of foundation for Iceland’s settlement in 930 had Pythagorean roots. Since then Petur Halldorsson has identified patterns that could not have been influenced by Pythagoras (c. 600 BC) and Pythagoras was known to have adapted the existing number sciences found (according to his myth) from Egypt to China.

Such patterns, called Cosmic Images by Halldorsson [3], seek to establish a geometric connection between places on the landscape and on the horizon, here in the south-western region near Reykjavik, the only Icelandic city. The spirit of a region or island was integrated through organising space in this way, according to centers (Things) of circles and their radius and diameter as numbers of paces, circles punctuated with places and alignments to other places, horizon events or cardinal directions. John Michell provided a guide to some of the techniques in his books [2, at end].


Figure 1 The Cosmic Image east of Reykjavik proposed by Palsson
Continue reading “Iceland’s Model of the Earth’s Meridian”

Palsson’s Sacred Image in Iceland

Extracted from The Structure of Metrology, its Classification and Application (2006) by John Neal and notes by Richard Heath for Bibal Group, a member of which, Petur Halldorsson, has taken this idea further with more similar patterns on the landscape, in Europe and beyond. Petur thinks Palsson’s enthusiasm for Pythagorean ideas competed with what was probably done to create this landform, as he quotes “Every pioneer has a pet theory that needs to be altered through dialogue.” Specifically, he “disputes the Pythagorean triangle in Einar’s theories. I doubt it appeared in the Icelandic C.I. [Cosmic Image] by design.” Caveat Emptor. So below is an example of what metrology might say about the design of this circular landform.


Figure 1 of Palsson’s (1993) Sacred Geometry in Pagan Iceland
Continue reading “Palsson’s Sacred Image in Iceland”

Use of Ad-Quadratum at Angkor Wat

The large temple complex of Angkor Wat ( photo: Chris Junker at flickr, CC BY-NC-ND 2.0 )

Ad Quadratum is a convenient and profound technique in which continuous scaling of size can be given to square shapes, either from a centre or periphery. The differences in scale are multiples of the square root
of two [sqrt(2)] between two types of square: cardinal (flat) and diamond (pointed).

The diagonal of a square of unit size is sqrt(2), When a square is nested to just touch a larger square’s opposite sides, one can know the squares differ by sqrt(2)
Continue reading “Use of Ad-Quadratum at Angkor Wat”