Multiple Squares to form Flattened Circle Megaliths

above: a 28 square grid with double, triple (top), and four-square rectangles (red),
plus (gray again) the triple rectangles within class B

Contents

1.     Problems with Thom’s Stone Circle Geometries.

2.     Egyptian Grids of Multiple Squares.

3.     Generating Flattened Circles using a Grid of Squares.

ABSTRACT

This paper reviews the geometries proposed by Alexander Thom for a shape called a flattened circle, survivors of these being quite commonly found in the British Isles. Thom’s proposals appear to have been rejected through (a) disbelief that the Neolithic builders of megalithic monuments could have generated such sophistication using only ropes and stakes and (b) through assertions that real structures do not obey the geometry he overlaid upon his surveys.

1. Problems with Thom’s Stone Circle Geometries

Almost all of the different types of megalithic building[1] were evolved in the fifth millennium (5,000-4,000 BC), in the area around Carnac on southern Brittany’s Atlantic coast. This includes the many circles built later in the British Isles. When Alexander Thom surveyed these [2] he found them to be remarkably technical constructions, involving sophisticated geometrical ideas. It was only in the mid-seventies, when Thom came to Carnac, that the same geometries were found applied within Carnac’s stone circles which soon afterwards were found to precede those of Britain by at least a thousand years.

After an initial public and academic enthusiasm for Thom’s work[3] British archaeologists chose, with very few exceptions, to refute the entire notion that the Neolithic could have been constructing such technical geometries. As far as our History would have it, such geometries could only have been drawn after the development[4] of a functional mathematics which culminated in Euclid’s classical work on analytic geometry, Elements. Thom’s use of geometry was therefore anachronistic and Thom surely mistaken. For archaeologists to accept Thom’s geometries would have required a revolution in thinking about the megalithic; for which there was little appetite. It was easier to work instead to falsify Thom’s hypothesis with a new type work that argued against Thom’s arguments for geometry, a megalithic yard and astronomical alignments, concluding instead, for example, that “stone circles were distorted so that the audience could see all the rites; and the principals could occupy visually focal positions facing the spectators.”, clearly indicating the still current “comfort zone” within archaeology, in which unquestioned ideas about superstitious rites are used to supersede Thom’s accurate and well founded proposals, of a megalithic technical capability. The problem with inventing ancient rites as the primary purpose for stone circle building is that, whilst refuting Thom’s proposal, it cannot itself ever be proved in a scientific sense; Talk of rites as being the reason for stone circle construction is not delivering an evidence-based scientific proof and Thom’s proposals were not disproved by such ideas.

Figure 1 Thom’s site plans of two of Britain’s finest surviving Flattened Circles, above: Castle Rigg (Type A) and below: Long Meg (Type B). Castle Rigg’s axis of symmetry points (within a degree) to Long Meg, on a bearing which follows the diagonal of a two by one (east by north) rectangle, as if (despite some Lake District mountains in between) the two sites were related when built and hence contemporaneous. site plans by Alexander Thom.

Unlike many of his detractors, Thom surveyed stone circles and through this activity was to create the first (and only) extensive corpus of stone circle site plans. Through this he left a vitally important legacy by preserving their layout against further natural and man-made degradation. The geometrical overlays and typology found within Thom’s site plans have been dismissed as unlikely, on spurious technical grounds [*], usually by people with insufficient technical background in the technical issues within his work. Thom’s later work in Carnac has proven critical in providing further alternative explanations as to how the megalithic actually constructed these stone circle geometries without Euclidian geometrical methods, using instead the system of multiple squares found to be in use in the megalithic structures around Carnac[5]; this in the late 1970’s and after Thom’s surveying seasons earlier in that decade[6].

We will later show that such a system of multiple squares would have eliminated the use of a “compass” or arcing of ropes which Thom proposed to explain how different stone geometries were achieved. Instead, a grid of squares can locate the few key points on the perimeter of a flattened circle. A design method based upon a grid of multiple squares would eliminate the main objection to Thom’s proposal of: Euclid-like geometrical process was used to build stone circle geometries.

Figure 2 the geometries of Flattened Circles (left to right) called Types A, B and D

In the case of the Type A (flattened) stone circles proposed by Thom, I demonstrate below that accepting Thom’s interpretation of its shape is a necessary stepping stone to understanding how this could be achieved by a pre-arithmetic megalithic of the fifth millennium BC.

2. Egyptian Grids of Multiple Squares

The monuments of Carnac demonstrate the use of multiple squares and, because of their antiquity –one to two thousand years before the Pyramid Age – it appears likely that the later use of multiple squares in Dynastic Egypt demonstrates how such a technique could function as a pre-arithmetical geometrical framework. By the Middle Kingdom, the Egyptians had put stylus to papyrus to describe their mathematics in a document called the Rhind Manuscript. This recorded a system of geometry based around pre-Ptolemaic ideas, which included the use of a grid of multiple squares.

At Carnac, the angular extremes of sunrise and sunset, on the horizon during the year, followed the lesser angle of a 3-4-5 triangle whilst in the Rhind Manuscript one finds a “canevas” [*] or grid-based diagram, in which both of the acute angles of this 3-4-5 triangle, held primary to the Egyptians, are shown to be generated by the summed diagonal angles of either; two double squares or two triple squares. The resulting grid is then 14 squares by 14 squares, and this is exactly the grid upon which the Type A stone circles can most easily be constructed, if one excludes the use of ropes and stakes to achieve this design.

Figure 3 of a Rhind diagram showing evolution of a 3-4-5 triangle within a 14 by 14 grid of squares

Such a use of multiple squares, as a template on which to construct a stone circle geometry, raises the question of the side length used, since they all need to be identical and so the ability to create identical lengths would certainly suggest an accurate system of measures, or metrology, was in use. This leads into another bitter dispute, concerning the existence of Alexander Thom’s found measure, the megalithic yard, as being a primary unit of measure maintained accurately by the megalithic builders throughout the British Isles and Brittany. Thom did not know enough about historical metrology to see that the megalithic yard might well have been accompanied by systematic variations applied to its length or indeed, that other measures might also have been evolved. His proposal of an accurate megalithic yard, like that of exact stone circle geometries, also came to be rejected by archaeologists, who themselves knew very little about historical metrology[7] [*], pointed to cases where Alexander Thom’s hypothesis of a singular measure in use within megalithic Britain was muddied by the presence also of other standard units of measure.

3. Generating Flattened Circles using a Grid of Squares

One of the key objections for the megalithic concerning ropes to construct flattened circles is the necessity for measured radii and their centres. If Thom’s Type A or Type B flattened circles were instead constructed using a grid of squares, then some of the key points where a flattened circle’s radius of curvature changes (of which there are only four) must be points of intersection within the grid . This became clear through considering the Type A geometry and specifically its implicit double triangles, as possible right triangles.

Robin Heath has already noted[8] that these triangles are close to the invariant ratio, in their longest sides, of the (lengths of) time found between the eclipse year and the solar year, and this ratio is also to be found between the solar year and the thirteen lunar month year.

The baseline of such a right triangle is found to be 6/7 of the diameter MN of the Type A flattened circle and this implies, given the left-right symmetry of this form, that this key point at the end of the hypotenuse (where the radius of curvature changes) would sit on the corner of a grid point within a 14 by 14 square grid as a length equal to twelve grid units. The forming circle used by Thom, of diameter MN, would then inscribe the grid square.

Figure 4 Type A drawn on a 14 square grid

We also know, from Carnac, that the astronomers used a triple square to frame this right triangle which then relates the periods of eclipse and solar year. Since the vertical position of the key point is 12 units, then to left and right the key points either end of the central flattened arc are 4 units, either side of the central axis. To right and left of these triple squares can be found two four squares, that express with perfect accuracy the relationship of the lunar year to the solar year, as diagonal. These four squares have a baseline of twelve grid squares which exactly matches the number of lunar months within the lunar year.

One can then see within the 14 square grid that many multiple squares can be found, for example the triple squares either side of the vertical centreline have two four-square rectangles to the right and left (shown in red below, the ripple-squares being blue). These leave a row of 14 by 2 squares at the top which can be seen as a seven-square, the rectangle whose diagonal to side alignment is found between a double and a triple square.

Conclusions

Clearly there are alternative ways of generating a flattened circle geometry that using stakes and ropes (geometry as we know it). We know that the Egyptians used grids within square grids of constant unit size and that multiple square rectangles were clearly used at Carnac in the megalithic (c. 4000 BC) before dynastic Egypt began, and by the time of the Rhind papyrus (Middle Kingdom) a system for containing irrationality of numbers had developed a school using grids, and what could be done with them. Ever since the Ancient world, this practice of “modularizing” buildings along rectangular or triangular “lines” became a key practical method outside of algebraic maths. It is therefore highly likely that grids gave the megalithic and later builders a canvas upon which to design and achieve accurate geometries not then rectalinear.

Some other resources.

More on the practical models of such early practices see my book Sacred Geometry: Language of the Angels. For more on flattened and multiple squares, please see chapter two of Sacred Number and the Lords of Time.

see also my youTube video of a talk at Megalithomania in 2015.


[1] ] Megalithic building types include standing stones, stone circles, stone rows, dolmen, chambered and other cairns.

[2] between 1934 and 1978

[3] during the late 1960s and early 1970s

[4] over two thousand miles away in the ancient near east

[5] [AAK and Howard Crowhurst]

[6] His survey can be found

[7] Historical metrology is a scattered remnant of the metrological system employed within the British stone circles and also within the Egyptian pyramids. It is this latter application of metrology in the ancient near east which spread metrology, though such an idea has also been opposed by archaeologists working in the near east.

[8] Sun, Moon and Stonehenge by Robin Heath 1998

Angkor Wat: Observatory of the Moon and Sun

above: Front side of the main complex by Kheng Vungvuthy for Wikipedia

In her book on Angkor Wat, the Cambodian Hindu-style temple complex, Eleanor Mannikka found an architectural unit in use, of 10/7 feet, a cubit of 20/21 feet (itself an outlier of the Roman module of 24/25 feet, at 125/126 of the 0.96 root Roman foot).

She began to find counted lengths of this unit, as symbols of the astronomical periods (such as 27 29 33) and of the great Yuga time periods proposed within Vedic mythology. Hence Mannikka’s title of Angkor Wat: Time, Space, and Kingship (1996). Whilst the temple was built by the Khymer’s greatest king, their foundation myth indicates the kingly line was adopted by a matriarchal goddess tradition.

Numerically Symbolic Monuments

Interpreting a monument using its metrology can be contentious. For example, in the megalithic period the established position has been that there was no metrological tradition and, to be found proposing one can cause your work to be ignored if not exiled from peer-reviewed journals, as was eventually the case with Prof. Alexander Thom.

At Teotihuacan, Japanese professor Saburo Sugiyama proposed an architectural unit of 83 centimeters was used, since the monumental complex would then clearly have numbers of these units corresponding to significant celestial periods, as if periods had been counted out within the City: the eclipse half year of 173 days at the Moon Pyramid, the Tzolkin of 260 days at the Sun Pyramid, and the Venus synod of 584 days at the Quetzalcoatl pyramid’s compound. More such day lengths and a well-known harmonic matrix were also seen in my Harmonic Origins of the World.

Astronomical counting within Teotihuacan (adapted from fig. 8.9)

Sugiyama did not reply to my message that his Teotihuacan Measuring Unit of 0.83 meters was the 2.72 foot length of Thom’s megalithic yard, implying some connection between Olmec/Maya Mexico and megalithic Europe. This was probably not welcome. Wikipedia’s editors of the “Megalithic Yard” page also objected to my mentioning this since it was I that had noticed this correspondence.

Over a 20 year period, Eleanor Mannikka found a numbers that were symbolic** or actual long counts of the solar and lunar years. In her thesis, these numbers were embodied as a ritual background for visiting pilgrims, whose steps corresponded to numbers – the megalithic yard being a metrological step of 2.5 feet. Her eventual counts emerged by a protocol that skipped thresholds, ran beyond, or started before a threshold, the counts were being human walkways but also excellent surfaces for doing accurate metrology.

**Her rule-based system that revealed numbers may well be a later function of the eventual monument, made to correspond with the numbers found in Hindu epic stories, since these are lavishly illustrated within extensive bas-reliefs, visible to pilgrims, depicting major Hindu myths. Statues of the gods punctuate the building’s many walkways to express the Indian practice of parikrama, of circumnavigating holy sites (such as around Mount Kailash or the great dome of Sanchi).

The Temple as AN Observatory

The symbolic use of numbers could only have become established through cosmic measurement in which astronomy (before our own) counted the actual numbers of days or months between repeating cycles of celestial alignment, and the differences and ratios between these. That is, ancient symbolic numbers originated in the Sky, where number-laden events measured in days or months generate whole numbers that were only then held to be sacred. One might think Angkor Wat too recent to have been constructed to suit this ancient sort of astronomical work. But the temple’s explicit orientation, to the west, was suited to just that. This made the temple perfect for observing and counting all sorts of time-counts, repeating measurements made millennia before using megalithic monuments.

That is, Angkor Wat is a current-era megalithic monument to the sky gods, these illustrated using the famous tableau of Vedic and later Indian myths.

The sun and moon set to the west**, each having a maximum range north or south of west. The sun at winter and summer solstice defines a fixed range within the solar year, depending on the latitude of a given site. In contrast, the Moon ranges over the horizon when setting over one orbital period of 27 1/3rd days. However, the moons orbit is skew to the sun’s path (ecliptic) so that the moon rises above and below, except at its nodes where eclipses can take place. These nodes move backwards so that the moon’s range on the horizon expands and contracts over 18.618 solar years.

**Looking west is very convenient since the sun or moon approach the horizon rather than suddenly appearing as they do in the east.

As a consequence, there are seven key points on the western horizon, the maximum standstill to north and south, the minimum standstill to north and south, the solstice extremes of the sun in summer (North) and winter (South), plus the equinox sunrise**. It is possible to calculate these alignments for the virtually flat terrain of Cambodia as in Figure 2.

**The Equinox sunset is a very exact point to measure since the sun appears to move rapidly on the horizon, between sunsets.

Figure 2 The alignments of Sun and Moon to the west (Left) around 1000 CE at the latitude of Angkor Wat using the Processing.org framework.

The notion of alignments seems to throw light upon the highly specific elements of Angkor Wat (see figure 3), if these alignments were viewed from the north eastern and south eastern corners of the raised temple enclosure.

Figure 3 Viewing the alignments of Sun and Moon, to the west (on Left), from the eastern corners.

There is a natural north-south symmetry, where the alignments to the solstice cross in the pream cruciform (see figure 4). The punctuation of the towers of the temple, seen from the eastern corners, would provide landmarks to calibrate the movement of (a) the sun in the year and (b) the moon within the lunar orbit, as the 18.6 year nodal movement expands and contracts the lunar range.

Figure 4 The Alignments seen within the plan of the temple complex.

The cruciform terrace outside the walls and nine fold cruciform within, could relate to the crossings of alignment and the periodicity of these cycles which would be countable in days using units of length.

The maximum moon alignments near 1000 BCE were 30 north and south or west, and one can plot those alignments over a flat Cambodia to the boundaries with Thailand which are, in contrast, significantly mountainous (see dark green areas at end of yellow alignments in Figure 5.

Figure 5 Google Earth view of the mountains at the end of both maximum moon alignments.

Parallels with the Megalithic near Carnac

The basic idea of such an observatory is a stone square instead of a stone circle. Alignments can be built-in, between back-sight observation points and fore-sight marker stones, marking the horizon location of an extreme event such as solstice. An observatory location can also look to an horizon event for which a distinct natural feature exists on the horizon, from that location. The stone perimeters of Carnac, called cromlechs, are various shapes but at Kerlescan, the cromlech is a rounded square, where the western perimeter is concave towards the east. That is, it faced rising events on the eastern horizon instead of setting events to the west.

Figure 6 Alexander Thom’s survey of the Kerlescan cromlech.

Otherwise, the “setup” is conducive to the observation of the sun and moon possible at Angkor Wat. Below I show how the observatory could work for the epoch 4000 BCE. The red lines are solar extremes and green lines are lunar maximum and minimum extremes. Equinoctial events at Spring and Autumn complete the inherently seven-fold nature of such phenomena.

Figure 7 Possible use of the Kerlescan cromlech, as an observatory facing east rather than west (at Angkor Wat).

π and the Megalithic Yard

The surveyor of megalithic monuments in Britain, Alexander Thom (1894 – 1985), thought the builders had a single measure called the Megalithic Yard which he found in the geometry of the monuments when these were based upon whole number geometries such as Pythagorean triangles. His first estimate was around 2.72 feet and his second and final was around 2.722 feet. I have found the two megalithic yards were sometimes 2.72 feet because the formula for 272/100 = 2.72 involved the prime number 17 as 8 x 17/ 100, and this enabled the lunar nodal period of 6800 days to be modelled and and the 33 year “solar hero” periods to be modelled, since these periods both involve the prime number 17 as a factor. In contrast, Thom’s final megalithic yard almost certainly conformed to ancient metrology within the Drusian module in which 2.7 feet times 126/125 equals 2.7216 feet, this within Thom’s error bars for his 2.722 feet as larger than 2.72 feet.

This suggests Thom was sampling more than one megalithic yard in different regions or employed for different uses. Neal [2000] found for Tom’s statistical data set having peaks corresponding to the steps of different modules and variations in ancient metrology, such as the Iberian with root 32/35 feet and the Sumerian with root 12/11 feet. It is only when you countenance the presence of prime numbers within metrological units that one breaks free of the inevitably weak state of proof as to what ancient units of measure actually were and, more importantly, why they were the exact values they were and further, how they came to be varied within their modules. However, the megalithic yard of 2.72 appears to outside the system in embodying the prime number 17 for the specific purpose of counting longer term periods which themselves embody that prime number.

The discipline of using only the first five primes {2 3 5 7 11} must have been accompanied by the perception that only if primes were dealt with could certain ends be served. This is crystal clear when we come to musical ratios in which the harmonic primes alone are used of {2 3 5} with an occasional “passenger” of the prime {7} as in 5040 which is 7 x 720, the harmonic constant.

Using 2.72 feet to count the Nodal Period

The first remarkable characteristic of 2.72 feet is that 8 x 17 in the numerator means that the approximation to π of 25/8 = 3.125 can, in (conceptually) multiplying a diameter, provide an image of 25 units on the circumference of a stone circle. For example a diameter of 2 MY would suggest 17 MY on the circumference, which is quite remarkable. Further to this, we know that the 6800 days of nodal cycle is factored as 17 x 400 and that the MY was shown (acceptably) to have been made up of 40 digits (in conformance to the general tradition within metrology that there are 16 digits per foot and 40 for a step of 2.5 feet, which a MY traditionally is). The circumference of 17 MY is then 17 x 40 digits which means that a diameter of 20 MY would give a circumference of 17 x 400 digits equalling 6800 digits as a countable circumference in digits per day.

This highlights how prime number factors played a role, in the absence of arithmetical methods, in solving the astronomical problems faced by the late stone age when counting time periods in days.

The Integration of the Megalithic Yard

Above is a proposed geometric relation between Thom’s megalithic yard (2.72 feet), the royal cubit (1.72 feet) and the remen (1.2 feet). Alexander Thom’s estimate for it based on decades of work was refined from 2.72 to 2.722 feet at Avebury. If the origins of it are astronomical, then its value emerges from the Metonic period of 19 years which is 235 lunar months, making its value 19/7 feet or more accurately 2.715428571 (19008/7000) feet and this makes it 2.7 feet x 176/175 within ancient metrology. Another astronomical derivation is found at Le Manio as the difference between three lunar and three solar years, when counted in day-inches as 32 + 5/8th inches which is 2.71875 (87/32) feet. The megalithic yard of Thom’s first appraisal, of 2.72, probably arose from its megalithic rod (MR) of 6.8 feet since, the Nodal Period of the moon’s nodes take 6800 days which in feet would be 1000 MR. For a fuller explanation see my the appendix of my Language of the Angels book and my discussions of the Cumbrian stone circle, called Seascale by Thom and the only known example of a Type D flattened circle.

One can see that the Megalithic Yard is a tale of many variations, some of which might not consider how or why the megalithic might have come to adopt such a yard. I have come to trust simple integers and ratios to guide me to a possible megalithic pathway. To demonstrate, the above megalithic yard at Le Manio, of 32.625 inches is 29/32 of the English yard, and 32 lunar months (at Le Manio Quadrilateral) is 29 AMY. Such simple rationics is explored here.

My 2012 Post below discusses John Neal’s view of the megalithic yard
drawing on his ancient metrology.

John Neal makes a masterful job of considering the megalithic yard in the context of historical metrology, a metrology that he has managed to forge into a single conceptual scheme in which measures known to history from different lands all inter-relate.

Neal’s book, All Done With Mirrors, is one of the most fundamental and significant contributions to the late megalithic and ancient world understanding of numbers but to read it is no easy matter since he takes no prisoners and fully expects readers to resolve through calculation what he does not explicitly state. This makes his approach different to mine in which I try to present as easily a possible aids to the visualisation and registration of a pattern of facts. However, neither approach can really substitute for what one has to do for oneself in order to understand and John gave his “Secret Academy” idea the catch line “We can’t give it away” because of the often deafening silence with which his work is met.

The aim here is to give some workings based on Neal’s book, to give others a taste of what lies beneath what is written and also to further my own interests in the Megalithic Yard. Thom’s lack of metrological background led to both an original approach but also a disconnect to what is known about historical metrology. One particular mystery is how measures appear to have propagated unchanged across millennia.

Neal says on page 47:

Thom made a comparison of his Megalithic Yard with only one other known unit of measurement. This was the Spanish vara, the pre-metric measurement of Iberia, its value 2.7425 feet. Related measurements to the vara survive all over the Americas wherever the Spanish settled, from Peru to Texas. Although the vara is exactly one of the lengths of the m.y. the fact that it is divided into three feet makes this relationship uncertain. These feet are thought to be Roman but this belief is also unlikely, and they would appear to be related to the earlier Etruscan-Mycenaean units. This is a good example of an intermediate measure being thought to be related because of a similarity in length, and illustrates the importance of considering the sub-divisions when sourcing a measure.

How units of measure are divided and aggregated follows strict rules. If these rules did not exist then the system of metrology would have no inner structure as a system. We don’t expect measures to follow rules because today we simply measure things, and do everything else as a calculation following on from that. Metrology is an “ology” because it is a system of calculation that was used for building ancient structures when only limited calculation was possible.

Thus Neal can talk about the ancestry of the megalithic yard because the forensic tools are available through the system of metrology, in which a yard has three feet but that places the foot at close to the limits for a foot, at just over 0.9 feet, for the vara which would then be a yard of near Assyrian feet (9/10 feet). The Roman foot is far greater at 24/25 or 0.96 feet. A Mycenean foot would be 15/16 of the Roman which is in the region of 0.91 feet but the compounding to two errors, that the vara is a yard and that the Roman is its foot is the sort of confusion that only an exact metrology can ever recover from.

Neal continues:

Why he [Thom] did not analyze the Megalithic Yard in terms of what was already very well known of ancient metrology, must remain a mystery. And why, after the Megalithic Yard becoming the most scrutinized measure in the history of measure, nobody else has succeeded in doing so, is an even greater mystery. The very simple fact of the matter is, that if as Thom claimed from the beginning, the Megalithic Yard has 40 sub-divisions, then it is not a “yard” but a double remen [1.25], or 2 and 1/2 feet, and the “megalithic inch” is a digit! If the Megalithic Yard is taken to be 2.7272 feet, which is within Thom’s parameters for the value, the megalithic inch is .06818 feet, which is well within the range of the digits of all known ancient measurements. 16 of these digits are therefore one megalithic foot of 1.0909 English feet. This is a well-known measurement in ancient metrology, sometimes referred to as the Ptolemaic foot, and mistakenly, as the Drusian foot. His “fathom” of 2 m.y. is the historically well-known intermediate measurement, of a pace of 5 feet. Then, his “megalithic rod” [6.8 feet] is 6.25 Ptolemaic feet, which is also a measure known in antiquity as being 100th part of a furlong of 625ft or 1/8th part of the 5,000ft mile. The megalithic measures are not, therefore, peculiar to what is accepted as the megalithic arena, but are perfectly integrated with measuring systems found throughout the ancient world.

One should realize here that Neal is using the word “ancient” in an unquantified way because he believes metrology and other sciences of the numerical arts were inherited by the megalithic – a position that I question since there is no evidence for it. The megalithic could have generated a science of metrology in its earliest phase which then evolved into the greater system of many types of feet (Neal’s modules) since the older megalithic monuments have not been well studied – the British monuments being from a later phase. The early burial mounds, if found to have employed this fuller system, would prove Neal’s thesis. he continues,

Furthermore, the methods whereby Thom discovered [his megalithic measures], namely by careful surveys and comparisons, are the time honoured methods pioneered by Petrie and in no way are they a mistaken interpretation of the evidence, or invention.

The pattern of metrology comes in the ratios between types of unit. If a different foot is used these patterns remain constant and when metrology is used to analyse monuments then it this grammar of its usage that has remained invariant. This may seem to be geeky nonsense until metrology is resolved as a system within which the apparent babel of metrological signals become a direct communication from the past. Neal does not make this any easier by delivering a masterly analysis that prerequires most of the structural understandings to be in place.

Doth this profit a man? And is it simply a specialist field? For sure, by now, like Neal I am something of a specialist. It is true that no older language than metrology, other than language itself, has come down from such antiquity. If there is a truth behind claims (like mine) that the number sciences were sacred and contain mysteries concerning the spiritual world, metrology could be a philosopher’s stone. But when and how?

It is also true that this system of prehistoric thought is now a very powerful forensic tool for recovering their intended meaning of ancient sites and the types of measure found might reveal lines of metrological transmission in the ancient world. Anyone interested needs to apply it in practice.

This excerpt was first published on matrixofcreation.co.uk in 2012

Postscript

The only problem in adopting Neal’s full structure for ancient metrology is that it bears upon the type of metrological knowledge of the size and shape of the Earth, that lies behind the form of the Great Pyramid and other ancient buildings. But I have since seen, from the point of view of early megalithic astronomy, a much freer use of the ordinal numbers {1 2 3 4 5 6 7 8 9… etc} was applied to counts of astronomical time, using simple geometries of circles and right triangles within which a simpler metrology arose, as explained in Sacred Geometry: Language of the Angels. Another problem with Neal’s metrological grid of “Earth ratios” is that the modular range becomes so filled with versions of each foot that a given measurement can give one a false identification upon which a false interpretation or dead end can defeat the process.

This means that, earlier than the late megalithic, one is studying primitive ratios between astronomical measurements. This is clear at Crucuno Dolmen to Rectangle, where the month was coded as 27 feet but the day was the root Iberian foot of 32/35 feet. From this can be deduced an accurate approximation of the lunar month as 27 feet divided by 32 and multiplied by 35 giving 29.53 125 (27 x 35/ 32) Iberian feet. When one multiplies this month by 32 (the denominator) the result is 945 so that 945 days equals 32 lunar months. It is therefore true that the original three lunar year count (leading to the megalithic yard) is 36 months, two lunar years 24 months and two Jupiter synods are 27 lunar months. This forms a limiting octave of {18 24 27 36} which became Plato’s World Soul in his Timaeus cosmogony 6:8::9:12 only tripled [do1 fa sol do2} (see my Harmonic Origins of the World). From this the megalithic can be seen to naturally lead finding 27 lunar months between three loops of Jupiter, so that one Jupiter synod is 13.5 (27/2) months. Hence my reconstruction of the Pythagorean Music of the Spheres, as a mystery garnered from the megalithic.

Sacred Number and the Lords of Time

Back Cover

ANCIENT MYSTERIES

“Heath has done a superb job of collating his own work on the subject of megaliths with the objective views of many other researchers in the field. I therefore do not merely recommend reading this book but can state unequivocally it is a must read.”
–John Neal, British metrologist and researcher and author of Measuring the Megaliths and The Structure of Metrology

“In Sacred Number and the Lords of Time we have an important explanation of how megalithic science was developed. This book is a long-overdue wakeup call to a modern culture that has abandoned this fully developed and astonishingly rich prehistoric model of the physical world. The truth is now out.”
–Robin Heath, coauthor of The Lost Science of Measuring the Earth and author of Sun, Moon and Earth

Continue reading “Sacred Number and the Lords of Time”

paper: The Origins of Day-Inch Counting

ABSTRACT
This paper presents the theory that in the Megalithic period, around 4500-4000 BCE, astronomical time periods were counted as one day to one inch to form primitive metrological lengths that could then be compared, to reveal the fundamental ratios between the solar year, lunar year, and lunar month and hence define a solar-lunar calendar. The means for comparison used was to place lengths as the longer sides of right angled triangles, leading to a unique slope angle. Our March 2010 survey of Le Manio supports this theory.