Angkor Wat: Observatory of the Moon and Sun

above: Front side of the main complex by Kheng Vungvuthy for Wikipedia

In her book on Angkor Wat, the Cambodian Hindu-style temple complex, Eleanor Mannikka found an architectural unit in use, of 10/7 feet, a cubit of 20/21 feet (itself an outlier of the Roman module of 24/25 feet, at 125/126 of the 0.96 root Roman foot).

She began to find counted lengths of this unit, as symbols of the astronomical periods (such as 27 29 33) and of the great Yuga time periods proposed within Vedic mythology. Hence Mannikka’s title of Angkor Wat: Time, Space, and Kingship (1996). Whilst the temple was built by the Khymer’s greatest king, their foundation myth indicates the kingly line was adopted by a matriarchal goddess tradition.

Numerically Symbolic Monuments

Interpreting a monument using its metrology can be contentious. For example, in the megalithic period the established position has been that there was no metrological tradition and, to be found proposing one can cause your work to be ignored if not exiled from peer-reviewed journals, as was eventually the case with Prof. Alexander Thom.

At Teotihuacan, Japanese professor Saburo Sugiyama proposed an architectural unit of 83 centimeters was used, since the monumental complex would then clearly have numbers of these units corresponding to significant celestial periods, as if periods had been counted out within the City: the eclipse half year of 173 days at the Moon Pyramid, the Tzolkin of 260 days at the Sun Pyramid, and the Venus synod of 584 days at the Quetzalcoatl pyramid’s compound. More such day lengths and a well-known harmonic matrix were also seen in my Harmonic Origins of the World.

Astronomical counting within Teotihuacan (adapted from fig. 8.9)

Sugiyama did not reply to my message that his Teotihuacan Measuring Unit of 0.83 meters was the 2.72 foot length of Thom’s megalithic yard, implying some connection between Olmec/Maya Mexico and megalithic Europe. This was probably not welcome. Wikipedia’s editors of the “Megalithic Yard” page also objected to my mentioning this since it was I that had noticed this correspondence.

Over a 20 year period, Eleanor Mannikka found a numbers that were symbolic** or actual long counts of the solar and lunar years. In her thesis, these numbers were embodied as a ritual background for visiting pilgrims, whose steps corresponded to numbers – the megalithic yard being a metrological step of 2.5 feet. Her eventual counts emerged by a protocol that skipped thresholds, ran beyond, or started before a threshold, the counts were being human walkways but also excellent surfaces for doing accurate metrology.

**Her rule-based system that revealed numbers may well be a later function of the eventual monument, made to correspond with the numbers found in Hindu epic stories, since these are lavishly illustrated within extensive bas-reliefs, visible to pilgrims, depicting major Hindu myths. Statues of the gods punctuate the building’s many walkways to express the Indian practice of parikrama, of circumnavigating holy sites (such as around Mount Kailash or the great dome of Sanchi).

The Temple as AN Observatory

The symbolic use of numbers could only have become established through cosmic measurement in which astronomy (before our own) counted the actual numbers of days or months between repeating cycles of celestial alignment, and the differences and ratios between these. That is, ancient symbolic numbers originated in the Sky, where number-laden events measured in days or months generate whole numbers that were only then held to be sacred. One might think Angkor Wat too recent to have been constructed to suit this ancient sort of astronomical work. But the temple’s explicit orientation, to the west, was suited to just that. This made the temple perfect for observing and counting all sorts of time-counts, repeating measurements made millennia before using megalithic monuments.

That is, Angkor Wat is a current-era megalithic monument to the sky gods, these illustrated using the famous tableau of Vedic and later Indian myths.

The sun and moon set to the west**, each having a maximum range north or south of west. The sun at winter and summer solstice defines a fixed range within the solar year, depending on the latitude of a given site. In contrast, the Moon ranges over the horizon when setting over one orbital period of 27 1/3rd days. However, the moons orbit is skew to the sun’s path (ecliptic) so that the moon rises above and below, except at its nodes where eclipses can take place. These nodes move backwards so that the moon’s range on the horizon expands and contracts over 18.618 solar years.

**Looking west is very convenient since the sun or moon approach the horizon rather than suddenly appearing as they do in the east.

As a consequence, there are seven key points on the western horizon, the maximum standstill to north and south, the minimum standstill to north and south, the solstice extremes of the sun in summer (North) and winter (South), plus the equinox sunrise**. It is possible to calculate these alignments for the virtually flat terrain of Cambodia as in Figure 2.

**The Equinox sunset is a very exact point to measure since the sun appears to move rapidly on the horizon, between sunsets.

Figure 2 The alignments of Sun and Moon to the west (Left) around 1000 CE at the latitude of Angkor Wat using the Processing.org framework.

The notion of alignments seems to throw light upon the highly specific elements of Angkor Wat (see figure 3), if these alignments were viewed from the north eastern and south eastern corners of the raised temple enclosure.

Figure 3 Viewing the alignments of Sun and Moon, to the west (on Left), from the eastern corners.

There is a natural north-south symmetry, where the alignments to the solstice cross in the pream cruciform (see figure 4). The punctuation of the towers of the temple, seen from the eastern corners, would provide landmarks to calibrate the movement of (a) the sun in the year and (b) the moon within the lunar orbit, as the 18.6 year nodal movement expands and contracts the lunar range.

Figure 4 The Alignments seen within the plan of the temple complex.

The cruciform terrace outside the walls and nine fold cruciform within, could relate to the crossings of alignment and the periodicity of these cycles which would be countable in days using units of length.

The maximum moon alignments near 1000 BCE were 30 north and south or west, and one can plot those alignments over a flat Cambodia to the boundaries with Thailand which are, in contrast, significantly mountainous (see dark green areas at end of yellow alignments in Figure 5.

Figure 5 Google Earth view of the mountains at the end of both maximum moon alignments.

Parallels with the Megalithic near Carnac

The basic idea of such an observatory is a stone square instead of a stone circle. Alignments can be built-in, between back-sight observation points and fore-sight marker stones, marking the horizon location of an extreme event such as solstice. An observatory location can also look to an horizon event for which a distinct natural feature exists on the horizon, from that location. The stone perimeters of Carnac, called cromlechs, are various shapes but at Kerlescan, the cromlech is a rounded square, where the western perimeter is concave towards the east. That is, it faced rising events on the eastern horizon instead of setting events to the west.

Figure 6 Alexander Thom’s survey of the Kerlescan cromlech.

Otherwise, the “setup” is conducive to the observation of the sun and moon possible at Angkor Wat. Below I show how the observatory could work for the epoch 4000 BCE. The red lines are solar extremes and green lines are lunar maximum and minimum extremes. Equinoctial events at Spring and Autumn complete the inherently seven-fold nature of such phenomena.

Figure 7 Possible use of the Kerlescan cromlech, as an observatory facing east rather than west (at Angkor Wat).

Origins of the Olmec/Maya Number Sciences

ABOVE: Stela C from Tres Zapotes roughly rebuilt by Ludovic Celle and based on a drawing by Miguel Covarrubias.

Introduction

The policy of archaeology regarding the Maya and their root progenitor the Olmec (1500 BCE onwards) is that its cultural innovations were made within Mexico alongside an agrarian revolution of the three sisters, namely squash, maize (“corn”), and climbing beans. This relationship of agriculture to civilizing skills then reads like the Neolithic revolution in Mesopotamia after 4000 BCE, where irrigation made the fertile loam able to absorb agricultural innovations from the northern golden triangle leading to writing, trade, city states, religion, arithmetic and so on. However, the idea that the ancient near east or India could have been an influence through ocean conveyors, of currents and trade winds, has never been accepted when proposed. Yet there are good reasons to think this since the astronomy and monumentalism of the pre-Columbian Mexican civilizations has precedents in the ancient near east and other locations.

The timing of the Olmec and the strangeness of immediately building sacred cities with an almost captive population of around 10,000 people, such as La Venta and San Lorenzo, with strong Jaguar imagery and practices, implies a cultic basis was present from the beginning. And it is now looking likely that the ancient near east was similarly prefigured, not just by agriculture but also by know how involving numbers for the building of sacred buildings with astronomical aspects – a tradition that goes back at least to the megalithic of the Atlantic seaboard of Europe.

Since Columbus, the native populations of North and South America have been largely displaced or marginalized. It may be for this reason that the notion that people from an advanced population had initiated the Olmec civilization requires a high, possibly impossible, level of proof. This Isolationism***, perhaps to avoid “adding insult to injury”, is against the Olmec having derived from the Old World, where the historical records are not that much better. The Olmec origin date is around the time of the quite sudden collapse of the Bronze Age in the Mediterranean around 1200 BCE. And the Olmec, Maya and Aztec appear to have had a definite myth concerning someone called Quetzelcoatl bringing civilizing skills to found their culture, though their culture was also seen as arising from a group of seven underground caves.

***The opposite of Diffusionism: Diffusionism is an anthropological school of thought, was an attempt to understand the distribution of culture in terms of the origin of culture traits and their spread from one society to another. Versions of diffusionist thought included the conviction that all cultures originated from one culture center (heliocentric diffusion); the more reasonable view that cultures originated from a limited number of culture centers (culture circles); and finally the notion that each society is influenced by others but that the process of diffusion is both [subject to chance] and arbitrary . read more

Long Counts and The LUNAR Calendar

Having sketched this background, this article will explore a strange coincidence between the calendrical origins of the Megalithic in Brittany, of a 36 lunar month, 3 lunar year calendar, and the 18 month calendar found in the some of the later Olmec Great Counts, called after the Supplementary Glyphs appended to record the local time in an 18 lunar month calendar. The correlation between long counts and the supplementary data has been invaluable since the long counts can be ambiguous between one or more possible dates but we can predict the sun and moon that far back can compare the glyphs with the alternative dates. Counts have also been found that were eclipses of the sun or moon, resolving a given long count date. It is therefoe interesting to compare the two calendars using the geometrical fact that 36 lunar months is both 2 x 18, 4 x 9 and 3 x 12 since 36 is 4 x 3 x3.

The implication is that the megalithic calendar over three years, which was based upon noticing that three solar years was the diagonal of a four square triangle whose side length is three lunar years, appears to have resulted in an Olmec/Maya calendar in which each square is 9 lunar months. As was noted in previous books (2004, 2016, 2018), the range 9 to 18 years contains a single lunar month {12}, the Jupiter synod {13.5}, the Saturn synod {12.8} and the Uranus synod {12.5}. This octave range between 9 and 2 x 9 = 18 was therefore possible to manifest as a Mexican city design (Teotihuacan) and as the Parthenon of Athens. A number of other examples can be found as one of the proposed major models used from the megalithic onwards, as discussed in Sacred Number: Language of the Angels (2021).

Hounds & Jackals as Venus Counter

The Petrie Museum has a game called Hounds & Jackals or 58 holes, from Egypt’s Middle Kingdom and widely found elsewhere, in the ancient world. Two players had a set of sharp ended sticks with animal heads, which sat in each of the 29 + 29 = 58 holes. The top hole is larger (as with the Cretan 34-hole circular kernos, at Malia in Crete).

Cretan 34-hole Kernos

One can see the possibilities in such artifacts stored objective numerical information while being kept, within the cultural life of the people, through having a valuable everyday purpose (rather like the 52 playing cards do). This was exactly how Gurdjieff saw it that, he proposed a meeting of wise men in Babylon, it was seen that ancient knowledge would be forgotten were it not that art, games, buildings, dances, music and so on were designed to incorporate the knowledge until such time that human would be able, once again, to understand what they meant. In his book Beelzebub’s Tales he termed such artifacts as being logominisms, loosely translating to “meaning objects”.

Continue reading “Hounds & Jackals as Venus Counter”

Story of Three Similar Triangles

first published on 24 May 2012,

Figure 1 Robin Heath’s original set of three right angled triangles that exploited the 3:2 points to make intermediate hypotenuses so as to achieve numerically accurate time lengths in units of lunar or solar months and lunar orbits.

Interpreting Lochmariaquer in 2012, an early discovery was of a near-Pythagorean triangle with sides 18, 19 and 6. This year (2018) I found that triangle as between the start of the Erdevan Alignments near Carnac. But how did our work on cosmic N:N+1 triangles get started?

Robin Heath’s earliest work, A Key to Stonehenge (1993) placed his Lunation Triangle within a sequence of three right-angled triangles which could easily be constructed using one megalithic yard per lunar month. These would then have been useful in generating some key lengths proportional to the lunar year:  

  • the number of lunar months in the solar year,
  • the number of lunar orbits in the solar year and 
  • the length of the eclipse year in 30-day months. 

all in lunar months. These triangles are to be constructed using the number series 11, 12, 13, 14 so as to form N:N+1 triangles (see figure 1).

n.b. In the 1990s the primary geometry used to explore megalithic astronomy was N:N+1 triangles, where N could be non-integer, since the lunation triangle was just such whilst easily set out using the 12:13:5 Pythagorean triangle and forming the intermediate hypotenuse to the 3 point of the 5 side. In the 11:12 and 13:14 triangles, the short side is not equal to 5.

Continue reading “Story of Three Similar Triangles”

On the Harmonic Origins of the World

Does the solar system function as a musical instrument giving rise to intelligent life, civilization and culture on our planet? This 2018 article in New Dawn introduced readers to the lost science of the megalithic – how our ancestors discovered the special ratios and musical harmony in the sky which gave birth to religion and cosmology. The musical harmonies were the subject of my book released that year, called The Harmonic Origins of the World.

After the ice receded, late Stone Age people developed the farming crucial to the development of cities in the Ancient Near East (ANE). On the Atlantic coast of Europe, they also developed a now-unfamiliar science involving horizon astronomy. Megalithic monuments were the tools they used for this, some still seen in the coastal regions of present day Spain, France, Britain and Ireland. Megalithic astronomy was an exact science and this conflicts with our main myth about our science: that ours is the only true science, founded through many historical prerequisites such as arithmetic and writing in the ancient near east (3000- 1200 BC) and theory-based reasoning in Classical Greece (circa 400-250 BC), to name but two. Unbeknownst to us, the first “historical period” in the near east was seeded by the exact sciences of the megalithic, such as the accurate measurement of counted lengths of time, developed by the prehistoric astronomers. With the megalithic methods came knowledge and discoveries, and one discovery was of the harmonic ratios between the planets and the Moon.

The idea that the planets were gods had been born before the ancient world, through the data of megalithic astronomy and this megalithic idea was the basis for the religious ideas of the East. Megalithic astronomy and Near Eastern religious and harmonic ideas have both been written out of our history of civilization, leaving us with enigmatic monuments and ill-defined religious mysteries. How this slighting of our real history happened is perhaps less important than our discovering again the purpose of the megalithic monuments and of those religious ideas that sprang from the discovery that the planets were harmonically related to life on Earth.

Le Menec Alignments indicate a profound astronomical work in the new stone age by 5000-4000 BC. Composite mash up by David Blake using Blender, Google Earth elevation and imagery plus Alexander Thom geometry and digitized stone locations.

Is human history lacking something fundamental?

Continue reading “On the Harmonic Origins of the World”

The Knowing of Time by the Megalithic

The human viewpoint is from the day being lived through and, as weeks and months pass, the larger phenomenon of the year moves the sun in the sky causing seasons. Time to us is stored as a calendar or year diary, and the human present moment conceives of a whole week, a whole month or a whole year. Initially, the stone age had a very rudimentary calendar, the early megalith builders counting the moon over two months as taking around 59 days, giving them the beginning of an astronomy based upon time events on the horizon, at the rising or setting of the moon or sun. Having counted time, only then could formerly unnoticed facts start to emerge, for example the variation of (a) sun rise and setting in the year on the horizon (b) the similar variations in moon rise and set over many years, (c) the geocentric periods of the planets between oppositions to the sun, and (d) the regularity between the periods when eclipses take place. These were the major types of time measured by megalithic astronomy.

The categories of astronomical time most visible to the megalithic were also four-fold as: 1. the day, 2. the month, 3. the year, and 4. cycles longer than the year (long counts).

The day therefore became the first megalithic counter, and there is evidence that the inch was the first unit of length ever used to count days.

In the stone age the month was counted using a tally of uneven strokes or signs, sometimes representing the lunar phase as a symbol, on a bone or stone, and without using a constant unit of measure to represent the day.

Once the tally ran on, into one or more lunar or solar years, then the problem of what numbers were would become central as was, how to read numbers within a length. The innovation of a standard inch (or digit) large numbers, such as the solar year of 365 days, became storable on a non-elastic rope that could then be further studied.

The 365 days in he solar year was daunting, but counting months in pairs, as 59 day-inch lengths of rope, allowed the astronomers to more easily visualize six of these ropes end-to-end, leaving a bit left over, on the solar year rope, of 10 to 11 days. Another way to look at the year would then be as 12 full months and a fraction of a month. This new way of seeing months was crucial in seeing the year of 365 days as also, a smaller number of about 12 and one third months.

Twelve “moons” lie within the solar year, plus some days.

And this is where it would have become obvious that, one third of a month in one year adds up, visually, to a full month after three years. This was the beginning of their numerical thinking, or rationality, based upon counting lengths of time; and this involved all the four types of time:

  1. the day to count,
  2. the month length to reduce the number of days in the day count,
  3. the solar year as something which leaves a fraction of a month over and finally,
  4. the visual insight that three of those fractions will become a whole month after three full solar years, that is, within a long count greater than the year.

To help one understand this form of astronomy, these four types of time can be organized using the systematic structure called a tetrad, to show how the activity of megalithic astronomy was an organization of will around these four types of time.

J.G. Bennett’s version of Aristotle’s tetrad.

The vertical pair of terms gives the context for astronomical time on a rotating planet, the GROUND of night and a day, for which there is a sky with visible planetary cycles which only the tetrad can reveal as the GOAL. The horizontal pair of terms make it possible to comprehend the cosmic patterns of time through the mediation of the lunar month (the INSTRUMENT), created by a combination of the lunar orbit illuminated by the Sun during the year, which gave DIRECTION. Arguably, a stone age culture could never have studied astronomical time without Moon and Sun offering this early aggregate unit of the month, then enabling insights of long periods, longer than the solar year.

The author (in 2010) at Le Manio Quadrilateral
where megalithic day-inch counting is clearly indicated after a theodolite survey,
over three years of its southern curb (to the left) of 36-37 stones.

The Manio Quadrilateral near Carnac demonstrates day-inch counting so well that it may itself have been a teaching object or “stone textbook” for the megalithic culture there, since it must have been an oral culture with no writing or numeracy like our own. After more than a decade, the case for this and many further megalithic innovations, in how they could calculate using rational fractions of a foot, allowed my latest book to attempt a first historical account of megalithic influences upon later history including sacred building design and the use of numbers as sacred within ancient literature.

The “output” of the solar count over three years is seen at the Manio Quadrilateral as a new aggregate measure called the Megalithic Yard (MY) of 32.625 (“32 and five eighths”), the solar excess over three lunar years (of 36 months). Repeating the count using the new MY unit, to count in months-per-megalithic yard, gave a longer excess of three feet (36 inches), so that the excess of the solar year over the lunar could then be known as a new unit in the history of the world, exactly one English foot. It was probably the creation of the English foot, that became the root of metrology throughout the ancient and historical world, up until the present.

The southern curb (bottom) used stones to loosely represent months from point P while, in inches, the distance to point Q’ was three solar years.

This theme will be continued in this way to explore how the long counts of Sun, Moon, and Planets, were resolved by the megalithic once this activity of counting was applied, the story told in my latest book.