Extremely Ancient knowledge of Precession of the Equinoxes

The above is part of the title of an 2018 paper  on the Athens Journal of History website, by Martin B. Sweatman and Alistair Coombs currently available here: 

Decoding European Palaeolithic Art: Extremely Ancient knowledge of Precession of the Equinoxes

This work concerns our understanding of the astronomical knowledge of ancient people. This knowledge, it seems, enabled them to record dates, using animal symbols to represent star constellations, in terms of precession of the equinoxes. Conventionally, Hipparchus of Ancient Greece is credited with discovering this astronomical phenomenon. We show here that this level of astronomical sophistication was known already within the last ice- age, and very likely by the time Homo sapiens entered western Europe around 40,000 years ago.

They go on to say “The evidence used to verify our hypothesis is accumulated from many of the most famous Palaeolithic cave art sites across Europe, representing dates up to 38,000 BC including;• Hohlenstein-Stadel cave, southern Germany circa 38,000 BC• Chauvet, northern Spain circa 33,000 BC• Lascaux, southern France circa 15,000 BC• Altamira, northern Spain circa 15,000 BC. Moreover, this system of representing dates is fully consistent with our interpretation of Neolithic sites in Anatolia, namely;• Göbekli Tepe, southern Turkey circa 10,000 BC• Çatalhöyük, southern Turkey circa 7,000 BC”

The question of ancient origins and precession was brought up well by de Santillana and von Deschend in Hamlet’s Mill (1969) and in Tilak’s The Orion (1893,) based largely upon mythic texts. A number of authors have previously found for star maps in stone age art, but this work appears to have crossed some scientific Rubicon and may find itself in Rome. There is a direct descendent of Hamlet’s Mill in The Spiritual Science of the Stars by Peter Stewart (who wrote it after decades of follow-up to that book).

Continue reading “Extremely Ancient knowledge of Precession of the Equinoxes”

The Cult of Seven Days

Published in Nexus Magazine in 2004

When understanding the origins of human knowledge, we tend not to look into the everyday aspects of life such as the calendar, our numbering systems and how these could have developed. However, these components of everyday life hold surprising clues to the past.

An example is the seven day week which we all slavishly follow today. It has been said that seven makes a good number of days for a week and this convenience argument often given for the existence of weeks.

Having a week allows one to know what day of the week it is for the purposes of markets and religious observances. It is an informal method of counting based on names rather than numbers. Beyond this however, a useful week length should fit well with the organisation of the year (i.e. the Sun), or the month (i.e. the Moon) or other significant celestial or seasonal cycle. But the seven day week does not fit in with the Sun and the Moon.

The Week and the Year

Continue reading “The Cult of Seven Days”

The Tetraktys as plan of planetary harmony and the four Elements

Figure 1 The elimination of 5 as a factor in the harmonic mountain for 36 lunar years, resolved using matrix units of one tenth of a month and the limit 360 units.

In a previous post I explored the astronomical matrix presented in The Harmonic Origins of the World with a view to reducing the harmonic between outer planets and the lunar year to a single harmonic register of Pythagorean fifths. This became possible when the 32 lunar month period was realized to be exactly 945 days but then that this, by the nature of Ernest McClain’s harmonic mountains (figure 1) must be 5/4 of two Saturn synods.

Using the lowest limit of 18 lunar months, the commensurability of the lunar year (12) with Saturn (12.8) and Jupiter (13.5) was “cleared” using tenths of a month, revealing Plato’s World Soul register of 6:8::9:12 but shifted just a fifth to 9:12::13.5:18, perhaps revealing why the Olmec and later Maya employed an 18 month “supplementary” calendar after some of their long counts.

By doubling the limit from 18 to three lunar years (36) the 13.5 is cleared to the 27 lunar months of two Jupiter synods, the lunar year must be doubled (24) and the 32 lunar month period is naturally within the register of figure 1 whilst 5/2 Saturn synods (2.5) must also complete in that period of 32 lunar months.

Continue reading “The Tetraktys as plan of planetary harmony and the four Elements”

Megalithic Measurement of Jupiter’s Synodic Period

image: Jupiter with now-shrunken red spot – Hubble Space Telescope

Though megalithic astronomers could look at the sky, their measurement methods were only accurate using horizon events. Horizon observations of solstice sunrise/set each year, lunar extreme moonrises or settings (over 18.6 years) allowed them to establish the geometrical ratios between these and other time periods, including the eclipse cycles. In contrast, the synod of Jupiter is measured between its loops in the sky, upon the backdrop of stars, in which Jupiter heads backwards each year as the earth passes between itself and the Sun. That is, Jupiter goes retrograde relative to general planetary direction towards the east. Since such retrograde movement occurs over 120 days, Jupiter will set 120 times whilst moving retrograde. This allowed megalithic astronomy to study the retrograde Jupiter, but only when the moon is conjunct with Jupiter in the night sky and hence will set with Jupiter at its own setting.


Figure 1 The metamorphosis of loop shape when Jupiter is in different signs of the Zodiac
Continue reading “Megalithic Measurement of Jupiter’s Synodic Period”

Death of Zeus in Crete

written in 2004

How can an immortal god die? Especially Zeus who was not just a god but head of the Olympians, a new breed of gods that had replaced the Titans and their “despotic” ruler, Chronos. A Rome holding to Zeus/Jupiter perhaps rejected the Cretan tradition of the god’s death with the well-broadcast adage “All Cretans are liars”.

But we all should know that mythology uses contradictory, or at least inconsistent, versions of the same story, to express alternative perspectives and to transmit more knowledge in the process, rather than “a lie”.

The importance of the death of Zeus is that the story emerges exactly from that point in time and cultural transformation in which Zeus is also born and at that time it was familiar for a vegetative god, representing nature blooming in spring and dying in autumn, to die and be re-born within the immortality of the eternal round of the year or yearly daemon.

There were other norms too, including the birth of men and their world of form, out of the Earth and from within The Cave, as a natural sacred space created by the Mother or earth goddess. Directly symbolic of her womb, form emerges as shapes in formation like dreams, travelling towards the definite order found on the surface.

Figure 1 The Dictyan Cave, one of two in Crete claimed claimed to be Zeus’ Nursery 
Continue reading “Death of Zeus in Crete”

Natural Evolution of our Modern Tuning System

The diatonic or natural scale, consisting of five whole tones and two opposed semitones, is most familiar today in the white notes of the piano [Apel. see Diatonic]. On the piano this would be called C-major, which imposes the sequence of tones (T) and semitones (S) as T-T-S-T-T-T-S in which the initial and final tetrachords are identically T-T-S, leaving a tone between F and G, the two fixed tones of the Greek tetrachordal system

The diatonic scale is … an abstractum; for all we have is five tones and two semitones a fifth apart [until] we fix the place of the semitones within the scale, thereby determining a definite succession …, [and] we create a mode. [Levarie. 213].

Musical Morphology,. Sigmund Levarie and Ernst Levy. Ohio:Kent State 1983. 213.

One can see that the tones are split by the major diatonic into one group of two (T-T) and one group of three (T-T-T), so the semitones are opposed (B-F) towards the tonic C as in figure 1.


Figure 1 Tone circle and tetrachords for C-Major also called the modal scale of Ionian

Letters such as C are called note classes so as to label the tones of a diatonic scale which, shown on the tone circle, can be rotated into any key signature of twelve keys including flattened or sharpened notes, shown in black in figure 1. We will first show how these black notes came about naturally, due to two aspects of common usage.

The note classes arose from the need of choral music to notate music so that it could be stored and distributed. When we “read music” today, the tablature consists of notes placed within a set of five lines with four gaps, and two extendable areas above and below in which only seven note classes can be placed, seven being the number of note classes in the modal diatonic and the number of white keys on the keyboard, which is the other aspect of usage.

Continue reading “Natural Evolution of our Modern Tuning System”