Counting the Moon: 32 in 945 days

One could ask “if I make a times table of 29.53059 days, what numbers of lunar months give a nearly whole number of days?”. In practice, the near anniversary of 37 lunar months and three solar years contains the number 32 which gives 945 days on a metrological photo study I made of Le Manio’s southern curb (kerb in UK) stones, where 32 lunar months in day-inches could be seen to be 944.97888 inches from the center of the sun gate. This finding would have allowed the lunar month to be approximated to high accuracy in the megalithic of 4000 BC as being 945/32 = 29.53125 days.

Silhouette of day-inch photo survey after 2010 Spring Equinox Quantification of the Quadrilateral.

One can see above that the stone numbered 32 from the Sun Gate is exactly 32/36 of the three lunar years of day-inch counting found indexed in the southern curb to the east (point X). The flat top of stone 36 hosts the end of 36 lunar months (point Q) while the end of stone 37 locates the end of three solar years (point Q’). If that point is the end of a rope fixed at point P, then arcing that point Q’ to the north will strike the dressed edge of point R, thus forming Robin Heath’s proposed Lunation Triangle within the quadrilateral as,

points P – Q – R !

In this way, the numerical signage of the Southern Curb matches the use of day-inch counting over three years while providing the geometrical form of the lunation triangle which is itself half of the simpler geometry of a 4 by 1 rectangle.

The key additional result shows that 32 lunar months were found to be, by the builders (and then myself), equal to 945 days (try searching this site for 945 and 32 to find more about this key discovery). Many important numerical results flow from this.

Counting the Moon: Two equals 59 days

Above: Title Slide of my 2015 Lecture

Counting the lunar month has a deep history, reaching right into prehistory. Firstly, how does one find a phenomenon that gives a whole number of days. Its actual length is now known to be 29.53059 days, and to give a whole number just two lunar months gives 59 days, leaving just 1.8 days too little. But never mind, for the stone age this looks promising but how can one observe the moon at a fixed point and which phase is best to count.

Within a day, before or after the full moon, the Moon looks pretty full, changing little and offering no decisive moment between to count between two full moons. For this reason, a few prehistoric bones give clues to their method which involved counting days with some mark representing the Moon’s phase. This led to the sickle/cresent marks to left “(” or right “)” and between these a round mark “O” and dashes of dark or invisible moon “-“. These are what Alexander Marshack saw in the Albard Plaque, carved on a flat bone from a midden:

Figure 1 (left) Alexander Marshack investigating marked bones in Europe and a crucial interpretation of a 30,000 year old bone as a double lunar month of counting. From my 2015 lecture in Glastonbury about my work prior to Sacred Number and the Lords of Time in 2014.

Marshack demonstrated plausible evidence that consecutive day marks were used in the stone age, stylised to indicate lunar phase within a pattern recognizing that two lunar months formed a recurrent structure in time in a whole number of days, namely 58 days. The utility of the calendric device was that the cycle could be visualized as a whole, making the plaque an icon of both knowledge and meaning. This could be shared but also gave the possessor of this small bone, a power to predict when hunting is possible in lighter nights the light cycle of the moon. In addition, the moon’s phase locates the location of the sun and how many hours were left before the dawn. The bone was an overview of a daily process during most of which the moon is visible by night and day.

In following posts I look at many other ways to count the month, based on longer counts and also look at where in the lunar phases one can best start and stop counting.

You may like to watch my lecture at Megalithomania
(which starts with an ad you may skip).

Inside Time

There are two things we can count in this world, one is the number of objects on the Earth and the other is the number of time periods between events in the Sky.

photo: The Moon, with Jupiter and Mars, on 11th January 2018. (see end for interpretation)

Objects are counted in an extensive way, from one to an almost infinite number, the count extending with each addition (or multiplication) of a population.

Time periods appear similar but in fact they emanate from measurable recurrences, such as phases of the moon, and these derive from the behaviour of celestial objects as they divide into each other.

For instance, the unit called the day is created by the rotation of the earth relative to the Sun and the lunar month by its orbit around the Earth relative to the Sun, and so on.

Thus, time originally came from the sky. Furthermore, it largely came from the zodiacal band of stars surrounding the Earth within which the planets, Sun and Moon progress eastwards. The Earth’s own orbital motion is superimposed upon those of the other planets and the inner planets (Mercury and Venus) also appear to orbit a Sun that appears to orbit the Earth once a year.

The zodiacal band is naturally divided up into a number of constellations or stars and about three thousand years ago it became popular to follow the Sun throughout the year into 12 constellations whilst the Moon tends to create 27 or 28 stars (nakshatras) where the Moon might sit on a given evening. When the moon is illuminated by the sun, the primordial month has 29 1/2 days and twelve such in less than a year hence perhaps first defining the 12-ness of our months within the year.

All celestial cycles recur and this has formed our notion of eternity, that the sky world is made up of cyclic time rather than extensive time – every year being the same cycle seen again but then numbered so that they can be referred to as to when something happened in the past. The intensive reality above our heads is the polar opposite of extensive counting of time we see in History where numbered years and days within named months provide an unbroken continuum of time and famous people are said to have made history through their actions at a given date.

Whilst on Earth we might measure feet or meters between objects, above we effectively measure angles and angular rates to arrive at a synthesis between intensive and extensive time we call a calendar, an inevitable necessity for an organised civilization. And the moon and then the sun gave rise to the early calendars that naturally led to the arising of history as a human phenomenon. The oldest myths were connected to the sky, and were less than historical because the language of the sky had not been formalized in a way we would recognize.

Myths speak of eternal patterns that repeat rather than of existential events, on earth. The sun, moon and planets were seen as gods whose generative functions were hailed as emerging from their interactions with each other.

It has been widely assumed that “primitive” thought was premature, fantasizing planetary gods out of thin air with an as yet unripened grasp on logic and reason. But a simpler explanation, for the equation of planets with super beings, was their finding of special numbers linking the planetary cycles when these were counted and compared. This quantification of celestial time evolved from knowing the days in a year and a month, into a running calendar – of various sorts. The Maya Long Count is an example where numbers could interact through week lengths of 13 and 20 days to give a sacred calendar of 260 days whilst in historical times the 7 day week emerged, tied to Saturnian time. In this way, a calendar could add weeks adapted to societal events such as having a market every Tuesday.

This is a big subject where we have all the sky data but do not spend time understanding it. In the past, the sky was our constant companion between few man-made spaces. The sky sits within the horizon and so was like a primordial cave for humans and, the sky became an early teacher through its phenomena.

Jupiter and the Lunar Year

The lunar month is like the common denominator of what happens inside time. The sun illuminates the phases of the moon during its month so that, the month combines the movements of the moon and the sun to form a synthetic (combined) period of 29 1/2 days and twelve of these months fit inside the solar year as the lunar year of 12 1/3rd months (354.367 days). Jupiter has its own relationship to the sun in that, when the sun is opposite the moon, Jupiter describes a loop amongst the stars, and strangely there are 13 1/2 lunar months between loops (Jupiter’s synodic period of 398.88 days). 13 1/2 months divided by 12 months is the ratio 9/8, a musical whole tone.

But in the image above, of Jupiter and the Moon, the moon would be full if Jupiter was going to loop (as earth “overtakes” Jupiter on the “inside lane” – the planets inspiring ancient racetracks). Mars is another “outer planet” which loops in the same way and so Mars is also not looping.

But without understanding these matters, the picture cannot be understood. The phase of moon shows where the sun is. The planets have been in conjunction. If Venus had been present, then it has a 4/3 ratio to Mars but has to remain close to the sun to appear first as an evening star, then a morning star, in a cycle 8/5 years (584 days) long compared to Mars synod (between loops) of 780 days. Less accurate than Jupiter to the Lunar year, by a day. This is what I mean by being inside time, where all the celestial bodies have relationships to one another, when these are seen by us from earth.

This is how I started, with my first book Matrix of Creation. The musical ratios and their entrance into ancient stories was explored in Harmonic Origins of the Earth. How ancient humans counted time was discussed in Lords of Time and a unified treatment made in Language of the Angels. Used alongside archaeology, more can be understood about the prehistoric and early civilizations since astronomy was the first real subject for the human race.

Origins of the Olmec/Maya Number Sciences

ABOVE: Stela C from Tres Zapotes roughly rebuilt by Ludovic Celle and based on a drawing by Miguel Covarrubias.

Introduction

The policy of archaeology regarding the Maya and their root progenitor the Olmec (1500 BCE onwards) is that its cultural innovations were made within Mexico alongside an agrarian revolution of the three sisters, namely squash, maize (“corn”), and climbing beans. This relationship of agriculture to civilizing skills then reads like the Neolithic revolution in Mesopotamia after 4000 BCE, where irrigation made the fertile loam able to absorb agricultural innovations from the northern golden triangle leading to writing, trade, city states, religion, arithmetic and so on. However, the idea that the ancient near east or India could have been an influence through ocean conveyors, of currents and trade winds, has never been accepted when proposed. Yet there are good reasons to think this since the astronomy and monumentalism of the pre-Columbian Mexican civilizations has precedents in the ancient near east and other locations.

The timing of the Olmec and the strangeness of immediately building sacred cities with an almost captive population of around 10,000 people, such as La Venta and San Lorenzo, with strong Jaguar imagery and practices, implies a cultic basis was present from the beginning. And it is now looking likely that the ancient near east was similarly prefigured, not just by agriculture but also by know how involving numbers for the building of sacred buildings with astronomical aspects – a tradition that goes back at least to the megalithic of the Atlantic seaboard of Europe.

Since Columbus, the native populations of North and South America have been largely displaced or marginalized. It may be for this reason that the notion that people from an advanced population had initiated the Olmec civilization requires a high, possibly impossible, level of proof. This Isolationism***, perhaps to avoid “adding insult to injury”, is against the Olmec having derived from the Old World, where the historical records are not that much better. The Olmec origin date is around the time of the quite sudden collapse of the Bronze Age in the Mediterranean around 1200 BCE. And the Olmec, Maya and Aztec appear to have had a definite myth concerning someone called Quetzelcoatl bringing civilizing skills to found their culture, though their culture was also seen as arising from a group of seven underground caves.

***The opposite of Diffusionism: Diffusionism is an anthropological school of thought, was an attempt to understand the distribution of culture in terms of the origin of culture traits and their spread from one society to another. Versions of diffusionist thought included the conviction that all cultures originated from one culture center (heliocentric diffusion); the more reasonable view that cultures originated from a limited number of culture centers (culture circles); and finally the notion that each society is influenced by others but that the process of diffusion is both [subject to chance] and arbitrary . read more

Long Counts and The LUNAR Calendar

Having sketched this background, this article will explore a strange coincidence between the calendrical origins of the Megalithic in Brittany, of a 36 lunar month, 3 lunar year calendar, and the 18 month calendar found in the some of the later Olmec Great Counts, called after the Supplementary Glyphs appended to record the local time in an 18 lunar month calendar. The correlation between long counts and the supplementary data has been invaluable since the long counts can be ambiguous between one or more possible dates but we can predict the sun and moon that far back can compare the glyphs with the alternative dates. Counts have also been found that were eclipses of the sun or moon, resolving a given long count date. It is therefoe interesting to compare the two calendars using the geometrical fact that 36 lunar months is both 2 x 18, 4 x 9 and 3 x 12 since 36 is 4 x 3 x3.

The implication is that the megalithic calendar over three years, which was based upon noticing that three solar years was the diagonal of a four square triangle whose side length is three lunar years, appears to have resulted in an Olmec/Maya calendar in which each square is 9 lunar months. As was noted in previous books (2004, 2016, 2018), the range 9 to 18 years contains a single lunar month {12}, the Jupiter synod {13.5}, the Saturn synod {12.8} and the Uranus synod {12.5}. This octave range between 9 and 2 x 9 = 18 was therefore possible to manifest as a Mexican city design (Teotihuacan) and as the Parthenon of Athens. A number of other examples can be found as one of the proposed major models used from the megalithic onwards, as discussed in Sacred Number: Language of the Angels (2021).

Story of Three Similar Triangles

first published on 24 May 2012,

Figure 1 Robin Heath’s original set of three right angled triangles that exploited the 3:2 points to make intermediate hypotenuses so as to achieve numerically accurate time lengths in units of lunar or solar months and lunar orbits.

Interpreting Lochmariaquer in 2012, an early discovery was of a near-Pythagorean triangle with sides 18, 19 and 6. This year (2018) I found that triangle as between the start of the Erdevan Alignments near Carnac. But how did our work on cosmic N:N+1 triangles get started?

Robin Heath’s earliest work, A Key to Stonehenge (1993) placed his Lunation Triangle within a sequence of three right-angled triangles which could easily be constructed using one megalithic yard per lunar month. These would then have been useful in generating some key lengths proportional to the lunar year:  

  • the number of lunar months in the solar year,
  • the number of lunar orbits in the solar year and 
  • the length of the eclipse year in 30-day months. 

all in lunar months. These triangles are to be constructed using the number series 11, 12, 13, 14 so as to form N:N+1 triangles (see figure 1).

n.b. In the 1990s the primary geometry used to explore megalithic astronomy was N:N+1 triangles, where N could be non-integer, since the lunation triangle was just such whilst easily set out using the 12:13:5 Pythagorean triangle and forming the intermediate hypotenuse to the 3 point of the 5 side. In the 11:12 and 13:14 triangles, the short side is not equal to 5.

Continue reading “Story of Three Similar Triangles”

The Knowing of Time by the Megalithic

The human viewpoint is from the day being lived through and, as weeks and months pass, the larger phenomenon of the year moves the sun in the sky causing seasons. Time to us is stored as a calendar or year diary, and the human present moment conceives of a whole week, a whole month or a whole year. Initially, the stone age had a very rudimentary calendar, the early megalith builders counting the moon over two months as taking around 59 days, giving them the beginning of an astronomy based upon time events on the horizon, at the rising or setting of the moon or sun. Having counted time, only then could formerly unnoticed facts start to emerge, for example the variation of (a) sun rise and setting in the year on the horizon (b) the similar variations in moon rise and set over many years, (c) the geocentric periods of the planets between oppositions to the sun, and (d) the regularity between the periods when eclipses take place. These were the major types of time measured by megalithic astronomy.

The categories of astronomical time most visible to the megalithic were also four-fold as: 1. the day, 2. the month, 3. the year, and 4. cycles longer than the year (long counts).

The day therefore became the first megalithic counter, and there is evidence that the inch was the first unit of length ever used to count days.

In the stone age the month was counted using a tally of uneven strokes or signs, sometimes representing the lunar phase as a symbol, on a bone or stone, and without using a constant unit of measure to represent the day.

Once the tally ran on, into one or more lunar or solar years, then the problem of what numbers were would become central as was, how to read numbers within a length. The innovation of a standard inch (or digit) large numbers, such as the solar year of 365 days, became storable on a non-elastic rope that could then be further studied.

The 365 days in he solar year was daunting, but counting months in pairs, as 59 day-inch lengths of rope, allowed the astronomers to more easily visualize six of these ropes end-to-end, leaving a bit left over, on the solar year rope, of 10 to 11 days. Another way to look at the year would then be as 12 full months and a fraction of a month. This new way of seeing months was crucial in seeing the year of 365 days as also, a smaller number of about 12 and one third months.

Twelve “moons” lie within the solar year, plus some days.

And this is where it would have become obvious that, one third of a month in one year adds up, visually, to a full month after three years. This was the beginning of their numerical thinking, or rationality, based upon counting lengths of time; and this involved all the four types of time:

  1. the day to count,
  2. the month length to reduce the number of days in the day count,
  3. the solar year as something which leaves a fraction of a month over and finally,
  4. the visual insight that three of those fractions will become a whole month after three full solar years, that is, within a long count greater than the year.

To help one understand this form of astronomy, these four types of time can be organized using the systematic structure called a tetrad, to show how the activity of megalithic astronomy was an organization of will around these four types of time.

J.G. Bennett’s version of Aristotle’s tetrad.

The vertical pair of terms gives the context for astronomical time on a rotating planet, the GROUND of night and a day, for which there is a sky with visible planetary cycles which only the tetrad can reveal as the GOAL. The horizontal pair of terms make it possible to comprehend the cosmic patterns of time through the mediation of the lunar month (the INSTRUMENT), created by a combination of the lunar orbit illuminated by the Sun during the year, which gave DIRECTION. Arguably, a stone age culture could never have studied astronomical time without Moon and Sun offering this early aggregate unit of the month, then enabling insights of long periods, longer than the solar year.

The author (in 2010) at Le Manio Quadrilateral
where megalithic day-inch counting is clearly indicated after a theodolite survey,
over three years of its southern curb (to the left) of 36-37 stones.

The Manio Quadrilateral near Carnac demonstrates day-inch counting so well that it may itself have been a teaching object or “stone textbook” for the megalithic culture there, since it must have been an oral culture with no writing or numeracy like our own. After more than a decade, the case for this and many further megalithic innovations, in how they could calculate using rational fractions of a foot, allowed my latest book to attempt a first historical account of megalithic influences upon later history including sacred building design and the use of numbers as sacred within ancient literature.

The “output” of the solar count over three years is seen at the Manio Quadrilateral as a new aggregate measure called the Megalithic Yard (MY) of 32.625 (“32 and five eighths”), the solar excess over three lunar years (of 36 months). Repeating the count using the new MY unit, to count in months-per-megalithic yard, gave a longer excess of three feet (36 inches), so that the excess of the solar year over the lunar could then be known as a new unit in the history of the world, exactly one English foot. It was probably the creation of the English foot, that became the root of metrology throughout the ancient and historical world, up until the present.

The southern curb (bottom) used stones to loosely represent months from point P while, in inches, the distance to point Q’ was three solar years.

This theme will be continued in this way to explore how the long counts of Sun, Moon, and Planets, were resolved by the megalithic once this activity of counting was applied, the story told in my latest book.