Thornborough Henge as Moon’s Maximum Standstill

The three henges appear to align to the three notable manifestations to the north west of the northerly moon setting at maximum standstill. The distance between northern and southern henge entrances could count 3400 days, each 5/8th of a foot (7.5 inches), enabling a “there and back again” counting of the 6800 days (18.618 solar years/ 19.618 eclipse years) between lunar maximum standstills.

Figure 1 The three henges are of similar size and design, a design most clear in what remains of the central henge.
Continue reading “Thornborough Henge as Moon’s Maximum Standstill”

The Cult of Seven Days

Published in Nexus Magazine in 2004

When understanding the origins of human knowledge, we tend not to look into the everyday aspects of life such as the calendar, our numbering systems and how these could have developed. However, these components of everyday life hold surprising clues to the past.

An example is the seven day week which we all slavishly follow today. It has been said that seven makes a good number of days for a week and this convenience argument often given for the existence of weeks.

Having a week allows one to know what day of the week it is for the purposes of markets and religious observances. It is an informal method of counting based on names rather than numbers. Beyond this however, a useful week length should fit well with the organisation of the year (i.e. the Sun), or the month (i.e. the Moon) or other significant celestial or seasonal cycle. But the seven day week does not fit in with the Sun and the Moon.

The Week and the Year

Continue reading “The Cult of Seven Days”

Megalithic Measurement of Jupiter’s Synodic Period

Though megalithic astronomers could look at the sky, their measurement methods were only accurate using horizon events. Horizon observations of solstice sunrise/set each year, lunar extreme moonrises or settings (over 18.6 years) allowed them to establish the geometrical ratios between these and other time periods, including the eclipse cycles. In contrast, the synod of Jupiter is measured between its loops in the sky, upon the backdrop of stars, in which Jupiter heads backwards each year as the earth passes between itself and the Sun. That is, Jupiter goes retrograde relative to general planetary direction towards the east. Since such retrograde movement occurs over 120 days, Jupiter will set 120 times whilst moving retrograde. This allowed megalithic astronomy to study the retrograde Jupiter, but only when the moon is conjunct with Jupiter in the night sky and hence will set with Jupiter at its own setting.


Figure 1 The metamorphosis of loop shape when Jupiter is in different signs of the Zodiac
Continue reading “Megalithic Measurement of Jupiter’s Synodic Period”