Diary Notes

Gurdjieff’s Diagram of Everything Living

This popular post has been brought forward in the midst of other related posts, including Gurdjieff, Octave Worlds & Tuning Theory , an unpublished paper from 2018-19.

Numbers of a Living Planet

I have started to serialize a book idea online, since it throws light on the central theme of living on a planet with Life, including me, but in a culture that has lost its understanding (from the deep past) that the world was forged into a set of special number relations. These numbers gave the earth and its large moon resonant relationships with the other planets that are largely dismissed by science because causation is by forces and not through the properties of numbers. It is also problematic that astronomy today sees the sun as gravitational center (which it is) and that the traditional viewpoint of all pre-scientific civilizations and cultures was based upon a planetary universe that was earth-centered (geocentric), rather than sun centered (heliocentric).

  1. Preface
  2. Primacy of low whole numbers
  3. Why numbers manifest living planets

New Beginning in providing videos

Since ClipChamp is available on Microsoft 365, I have been able to replace my broken video editor with this simple devise for making intermediate educational videos. To do this I wrote a few lines if text about how the Moon’s orbit could be tracked in the sky and how this naturally lead to 28 lunar mansions in some earlier astronomies, before the 12 signs of the Zodiac (thought to come from Mesopotamian astronomy to join our present constellations which collided with the Greece Myths to make our present organization of the stars in the night sky. This earlier 28-fold system of the lunar orbit appears to have been recognized as similar, upon the ecliptic, to the 28 synodic loops of Saturn in 29 practical years of 365 days.

Saturn’s “Measuring” of the Lunar Month

The Coronation Pavement of Westminster Abbey

Mosaic Pavements for crowning of kings and queens probably derive from a northern European and Mediterranean traditions, (a) of sacred king-making stones, in which a king would (for example) place his foot into a foot-shaped depression, and (b) the mosaic pavements of Roman villas and Orthodox churches. But an even older tradition seems to inform the Westminster pavement: a geometrical model of a circle and square of equal perimeter. This geometry conforms to the relative sizes of the earth and moon as an 11-unit side length and the equal-perimeter circle’s diameter (14 units ) minus 11 units so that the moon is diameter 3. for more, see this article on the design of King Charles III coronation pavement.

Grids of Squares & Flattened Circles

There is a common approach in ancient building based upon the establishment of a grid of squares, as a framework for the geometrical construction of buildings, from stone circles to Egyptian and Greek temples, to Roman and Orthodox Basilicas, and to Gothic and Enlightenment buildings, plus in Indian temples. Just as one builds foundations, all that is inside a building is controlled by numerical ideas. I have therefore published some work I did to show how flattened circle, in megalithic times, could have used what came to be Egyptian methods for laying out building works and to not always depend on the ropes and stakes of the free style geometrical construction which led to analytical geometry, compass and straight edge.

Peat Fires revealing Rock Art

There have been a number of large peat moor fires in England and one of these in North Yorkshire revealed a few megalithic sites. I have republished my own interpretation of a significant pattern made on a major flat stone as part of an egg-shaped stone circle. The egg can be seen in the work of Alexander Thom as based on the near-Pythagorean triangle with sides {17 17 24.0416}. When Thom’s plan is laid over that of the excavation (Rock Art and Ritual by Brian Smith and Alan Walker), one can see there is a close fit to the excavated site. When the egg is expanded to fit the line drawn by the excavators, the units of the geometry are 1/2 foot (6 inches) so that 17 = 102 inches (8.5 feet), 24 = 144 inches (12 feet) and 12 = 72 inches (6 feet), possible by overlaying different plans, one with the scale shown!

Geometry of the stone egg where the rock art was found on one of its stones. Note the alignment of the egg’s axes to the cardinality of the sun’s solstice extremes at that latitude.

Chalk Drums to generate pi

When I joined the Prehistoric Society for a year, an article about megalithic chalk drums being found with strange decoration which may depict PI, since their diameter allows rolling them to count out a given type of foot measure. This may be why some are not carved because they were heavily used while others could have been metrological standards, not as rods but as cylinders that do not required end-to-end counting but continuous counting, providing one can count!

Angkor Wat as west-facing observatory

I have been doing work on Angkor Wat, something I never got around to after a first introductory post about nested squares there. Both Lords of Time and Language of the Angels were to have included it. Eleanor Mannikka, spent 20 years on a numerical analysis of its architecture and there is an amazing set of French plans by G. Nafilyan. I looked at the temple as an observatory, since it looks west as aligned towards the sun and moon setting on the horizon, which appears to have been part of its intended use. Settings are easier to work with that risings, since there is plenty of warning of settings as sun or moon slowly travel every day towards the western horizon.

Angkor Wat: Observatory of the Moon and Sun

above: Front side of the main complex by Kheng Vungvuthy for Wikipedia

In her book on Angkor Wat, the Cambodian Hindu-style temple complex, Eleanor Mannikka found an architectural unit in use, of 10/7 feet, a cubit of 20/21 feet (itself an outlier of the Roman module of 24/25 feet, at 125/126 of the 0.96 root Roman foot).

She began to find counted lengths of this unit, as symbols of the astronomical periods (such as 27 29 33) and of the great Yuga time periods proposed within Vedic mythology. Hence Mannikka’s title of Angkor Wat: Time, Space, and Kingship (1996). Whilst the temple was built by the Khymer’s greatest king, their foundation myth indicates the kingly line was adopted by a matriarchal goddess tradition.

Numerically Symbolic Monuments

Interpreting a monument using its metrology can be contentious. For example, in the megalithic period the established position has been that there was no metrological tradition and, to be found proposing one can cause your work to be ignored if not exiled from peer-reviewed journals, as was eventually the case with Prof. Alexander Thom.

At Teotihuacan, Japanese professor Saburo Sugiyama proposed an architectural unit of 83 centimeters was used, since the monumental complex would then clearly have numbers of these units corresponding to significant celestial periods, as if periods had been counted out within the City: the eclipse half year of 173 days at the Moon Pyramid, the Tzolkin of 260 days at the Sun Pyramid, and the Venus synod of 584 days at the Quetzalcoatl pyramid’s compound. More such day lengths and a well-known harmonic matrix were also seen in my Harmonic Origins of the World.

Astronomical counting within Teotihuacan (adapted from fig. 8.9)

Sugiyama did not reply to my message that his Teotihuacan Measuring Unit of 0.83 meters was the 2.72 foot length of Thom’s megalithic yard, implying some connection between Olmec/Maya Mexico and megalithic Europe. This was probably not welcome. Wikipedia’s editors of the “Megalithic Yard” page also objected to my mentioning this since it was I that had noticed this correspondence.

Over a 20 year period, Eleanor Mannikka found a numbers that were symbolic** or actual long counts of the solar and lunar years. In her thesis, these numbers were embodied as a ritual background for visiting pilgrims, whose steps corresponded to numbers – the megalithic yard being a metrological step of 2.5 feet. Her eventual counts emerged by a protocol that skipped thresholds, ran beyond, or started before a threshold, the counts were being human walkways but also excellent surfaces for doing accurate metrology.

**Her rule-based system that revealed numbers may well be a later function of the eventual monument, made to correspond with the numbers found in Hindu epic stories, since these are lavishly illustrated within extensive bas-reliefs, visible to pilgrims, depicting major Hindu myths. Statues of the gods punctuate the building’s many walkways to express the Indian practice of parikrama, of circumnavigating holy sites (such as around Mount Kailash or the great dome of Sanchi).

The Temple as AN Observatory

The symbolic use of numbers could only have become established through cosmic measurement in which astronomy (before our own) counted the actual numbers of days or months between repeating cycles of celestial alignment, and the differences and ratios between these. That is, ancient symbolic numbers originated in the Sky, where number-laden events measured in days or months generate whole numbers that were only then held to be sacred. One might think Angkor Wat too recent to have been constructed to suit this ancient sort of astronomical work. But the temple’s explicit orientation, to the west, was suited to just that. This made the temple perfect for observing and counting all sorts of time-counts, repeating measurements made millennia before using megalithic monuments.

That is, Angkor Wat is a current-era megalithic monument to the sky gods, these illustrated using the famous tableau of Vedic and later Indian myths.

The sun and moon set to the west**, each having a maximum range north or south of west. The sun at winter and summer solstice defines a fixed range within the solar year, depending on the latitude of a given site. In contrast, the Moon ranges over the horizon when setting over one orbital period of 27 1/3rd days. However, the moons orbit is skew to the sun’s path (ecliptic) so that the moon rises above and below, except at its nodes where eclipses can take place. These nodes move backwards so that the moon’s range on the horizon expands and contracts over 18.618 solar years.

**Looking west is very convenient since the sun or moon approach the horizon rather than suddenly appearing as they do in the east.

As a consequence, there are seven key points on the western horizon, the maximum standstill to north and south, the minimum standstill to north and south, the solstice extremes of the sun in summer (North) and winter (South), plus the equinox sunrise**. It is possible to calculate these alignments for the virtually flat terrain of Cambodia as in Figure 2.

**The Equinox sunset is a very exact point to measure since the sun appears to move rapidly on the horizon, between sunsets.

Figure 2 The alignments of Sun and Moon to the west (Left) around 1000 CE at the latitude of Angkor Wat using the Processing.org framework.

The notion of alignments seems to throw light upon the highly specific elements of Angkor Wat (see figure 3), if these alignments were viewed from the north eastern and south eastern corners of the raised temple enclosure.

Figure 3 Viewing the alignments of Sun and Moon, to the west (on Left), from the eastern corners.

There is a natural north-south symmetry, where the alignments to the solstice cross in the pream cruciform (see figure 4). The punctuation of the towers of the temple, seen from the eastern corners, would provide landmarks to calibrate the movement of (a) the sun in the year and (b) the moon within the lunar orbit, as the 18.6 year nodal movement expands and contracts the lunar range.

Figure 4 The Alignments seen within the plan of the temple complex.

The cruciform terrace outside the walls and nine fold cruciform within, could relate to the crossings of alignment and the periodicity of these cycles which would be countable in days using units of length.

The maximum moon alignments near 1000 BCE were 30 north and south or west, and one can plot those alignments over a flat Cambodia to the boundaries with Thailand which are, in contrast, significantly mountainous (see dark green areas at end of yellow alignments in Figure 5.

Figure 5 Google Earth view of the mountains at the end of both maximum moon alignments.

Parallels with the Megalithic near Carnac

The basic idea of such an observatory is a stone square instead of a stone circle. Alignments can be built-in, between back-sight observation points and fore-sight marker stones, marking the horizon location of an extreme event such as solstice. An observatory location can also look to an horizon event for which a distinct natural feature exists on the horizon, from that location. The stone perimeters of Carnac, called cromlechs, are various shapes but at Kerlescan, the cromlech is a rounded square, where the western perimeter is concave towards the east. That is, it faced rising events on the eastern horizon instead of setting events to the west.

Figure 6 Alexander Thom’s survey of the Kerlescan cromlech.

Otherwise, the “setup” is conducive to the observation of the sun and moon possible at Angkor Wat. Below I show how the observatory could work for the epoch 4000 BCE. The red lines are solar extremes and green lines are lunar maximum and minimum extremes. Equinoctial events at Spring and Autumn complete the inherently seven-fold nature of such phenomena.

Figure 7 Possible use of the Kerlescan cromlech, as an observatory facing east rather than west (at Angkor Wat).

Palsson’s Sacred Image in Iceland

Extracted from The Structure of Metrology, its Classification and Application (2006) by John Neal and notes by Richard Heath for Bibal Group, a member of which, Petur Halldorsson, has taken this idea further with more similar patterns on the landscape, in Europe and beyond. Petur thinks Palsson’s enthusiasm for Pythagorean ideas competed with what was probably done to create this landform, as he quotes “Every pioneer has a pet theory that needs to be altered through dialogue.” Specifically, he “disputes the Pythagorean triangle in Einar’s theories. I doubt it appeared in the Icelandic C.I. [Cosmic Image] by design.” Caveat Emptor. So below is an example of what metrology might say about the design of this circular landform.


Figure 1 of Palsson’s (1993) Sacred Geometry in Pagan Iceland
Continue reading “Palsson’s Sacred Image in Iceland”

Thornborough Henge as Moon’s Maximum Standstill

The three henges appear to align to the three notable manifestations to the north west of the northerly moon setting at maximum standstill. The distance between northern and southern henge entrances could count 3400 days, each 5/8th of a foot (7.5 inches), enabling a “there and back again” counting of the 6800 days (18.618 solar years/ 19.618 eclipse years) between lunar maximum standstills.

Figure 1 The three henges are of similar size and design, a design most clear in what remains of the central henge. [photo: Iain Petrie]
Continue reading “Thornborough Henge as Moon’s Maximum Standstill”

Similarities between Le Menec and Erdevan Alignments

In a previous article, the 7,500 foot-long Erdevan alignments were seen to have been a long count of the Saros period of 19 eclipse years versus the distance to Mane Groh dolmen of 19 solar years, this probably conceptualized as an 18-19-6 near-Pythagorean triangle, whose inner angle is the bearing from east of Mané Groh. However, the path directly east caused the actual alignments, counting the Saros, to veer south to miss the hill of Mané Bras.

It has been remarked that the form of the northern alignments of Edeven were similar to those starting at Le Menec’s egg-shaped stone circle 4.25 miles away, at a bearing 45 degrees southeast. Whilst huge gaps have been caused in those of Edeven by agriculture, the iconic Le Menec alignments seem to have fared better than the alignments of Kermario, Kerlescan and Petit Menec which follow it east, these being known as the Carnac Alignments above the town of that name.

One similarity between alignments is the idea of starting and terminating them with ancillary structures such as cromlechs (stone kerb monuments), such as the Le Menec egg and, despite road incursion, a3-4-5 structure similar to Crucuno, aligned to the midsummer sunset by a length 235 feet long. This is the number of lunar months in the 19 year Metonic period and is factored 5 times 47. Another similarity may be seen in Cambray’s 1805 drawing of these Kerzerho alignments, at the head of ten stone rows marching east (figure 1).

Figure 1 Cambrey’s 1805 engraving of Kerzerho’s western extremity of the Erdeven alignments showing the stone rows now lost to agriculture.
Continue reading “Similarities between Le Menec and Erdevan Alignments”