What stone L9 might teach us

image of stone L9, left of corridor of Gavrinis Cairn,
4Km east of Carnac complex. [image: neolithiqueblog]

This article was first published in 2012.

One test of validity for any interpretation of a megalithic monument, as an astronomically inspired work, is whether the act of interpretation has revealed something true but unknown about astronomical time periods. The Gavrinis stone L9, now digitally scanned, indicates a way of counting the 18 year Saros period using triangular counters  founded on the three solar year relationship of just over 37 lunar months, a major subject (around 4000 BC) of the Le Manio Quadrilateral, 4 Km west of Gavrinis. The Saros period is a whole number, 223, of lunar months because the moon must be in the same phase (full or new) as the earlier eclipse for an eclipse to be possible. 

On the roof with Anthony Blake (left) on the DuVersity Albion Tour, in August 2004.

Handling the Saros Period

223 is a prime number not divisible by any lower number of lunar months, such as 12 in the lunar year. 18 lunar years equates to 216 lunar months, requiring seven further months to reach the Saros condition where not only is the lunar phase the same but also, the sun is sitting upon the same lunar node, after 19 eclipse years of 346.62 days.

However, astronomers at Carnac already had a number of 37 lunar months (just less than three solar years) in their minds and, it appears, they could apply this as a length 37 units long, as if each unit was a lunar month. We also know that the unit they used for counting lunar months was originally 29.53 inches (3/4 metre) or later, the megalithic yard. Visualising a rope of length 37 megalithic yards, the length can be multiplied by repeating the rope end-to-end. After six lengths, 222 or 6*37 lunar months were represented, one lunar month less than the 223 lunar months which define the Saros period.

Figure 1 The near-integer Anniversary of Lunar Months over Three Years

This six-fold use of the number 37 appears to be used within the graphic design of Gavrinis stone L9 (see figure 2), as the triangular shape which has an apex angle of 14 degrees and which refers to the triangle formed at Le Manio between day-inch counts over three solar and three lunar years. It appears that this triangular shape was used to refer to the counting of solar years relative to a stone age lunar calendar (see 2nd register of stone R8) but it could also have the numerical meaning of 37 because three solar years contained 37 whole lunar months just as a single solar year contains 12 whole lunar months (the lunar year).

I believe this triangle, already symbolic of 37, appears in pairs within stone L9, as a single counter showing two axe heads, their points adjacent so that they have one side also adjacent. The two triangles are found to be held accurately within the apex angle of another triangle, known to be in use at Carnac, the triangle with side lengths 5-12-13, with apex angle 22.6 degrees. These pairs would then effect the notion of addition so that each is valued at 37 + 37 = 74 lunar months.

Figure 2. The use of two three-year triangles, made to fit within the 5-12-13 triangle to form a single counter worth 74 lunar months. (MegalithicScience.org eventually became this website)

All of the three pairs have this same apex angle, of the 5-12-13 triangle, chosen perhaps because 12+12+13 = 37 whilst the 14 degree triangle was known to be rationally held within it when the 12 side is seen as the lunar year of 12 months. The third side is then 3 lunar months long (¼ lunar year) forming an intermediate hypotenuse within a 5-12-13 triangle, which is equal to the 12.368 months of the solar year. Robin Heath first identified the smaller triangle when studying the properties of the 5 by 12 rectangle of Stonehenge’s Station Rectangle, arguably made up of two 5-12-13 triangles joined by their 13 sides. Three solar years then seems to have become associated with the pattern 12+12+13 (= 37) by the historical period, since Arab and medieval astronomers came to organize their intercalary months within the Callippic cycle of 4 Metonic periods (= 4 x 19 years equaling 76 solar years).

Figure 3. The quantification of the Saros as 18 solar years and 11 days equal to 223 lunar months. The language of days and years at Gavrinis might well have been the primary perception of light and dark periods.

The Saros period of 223 lunar months then also appears indicated on stone L9, below these triangles, within the main feature of this stone, a near-square Quadrilateral having one right angle. It has a rounded top, containing a wavy engraved design emanating from a central vertical, not unlike a menhir. The waves proceed upwards but then narrow to a vestigial extent after the 18th, which would be one way to symbolise the Saros period as 18 years and eleven days in duration. A different graphical allusion was used on stone R8, again showing lines as years but giving the 19th year as a shortened “hockey stick”.

Conclusions

In Gavrinis stone L9, a “primitive” numerical and phenomenological symbolism appears to have expressed a useful computational fact: that the Saros period was one lunar month more than six periods of 37 lunar months. These three periods of 37 months were shown as blade shapes, each symbolising three solar years, but shown as pairs within three 5-12-13 triangles above a quadrilateral shape indicating 18 wavy lines plus a smallest period, this symbolising the 11 days over 18 years of the Saros Period, defined by 223 lunar months. This allowed the Saros to be seen as six periods of 37 lunar months, equal to 222, plus one lunar month. Once the count reached 222, attention to the end of the next lunar month would be key. This enabled a pre-arithmetic culture to approach prime number 223 from another large prime (37) which was nearly expressed by 3 solar years, then repeated six times yo become 222 lunar months. This same counting regime appears to have been employed elsewhere:

  1. Astronomical Rock Art at Stoupe Brow, Fylingdales.
  2. Eleven Questions on Sacred Numbers.
  3. Counting lunar eclipses using the Phaistos Disk.

Many thanks to Laurent Lescop of Nantes University Architecture Dept,
for providing the scan on which this work is based.

Astronomy 3: Understanding Time Cycles

above: a 21-petal object in the Heraklion Museum which could represent the 21 seven-day weeks in the 399 days of the Jupiter synod. [2004, Richard Heath]

One of the unfortunate aspects of adopting the number 360 for calibrating the Ecliptic in degrees is that the megalithic counted time in days and instead saw the ecliptic as divided by the 365¼ days. In transferring to the number 360, with all of its easy factors, 8 x 9 x 5, moderns cannot exploit a key advantage of 365¼ days.

If the lunar orbit takes 27.32166 days then each day the moon moves by 1/27.32166 of the ecliptic every day. For this reason, after 27.32166 days the orbit completes because the Moon’s “year” then equals one as the angular motion has been 27.32166/ 27.32166 = 1.

The same is true of the lunar nodes, which retrograde to the east along the ecliptic in 18.618 years. For this reason one can say, the lunar nodes move by 1/18.618 DAYS (in angle) every day and to travel one DAY in angle, the nodes take 18.618 DAYS per day (needing the new term “node day” equal the 18.618 days.*** A solar year takes 19.618 node days (since 365¼ equals 18.618 x 19.618) and an eclipse year takes 18.618 x 18.618 – 346.62 days

*** These are average figures since the moon comes under variable gravitational influences that are episodic.

A general rule emerges in which the larger, whole cycles, lead to reciprocals which can be numerically characterized by knowing the number of the days in the larger period.

For instance, Jupiter has a synodic excess over the solar year of 398.88 days and this means its angular motion is 1/ 398.88 DAYS per day while Saturn’s synod is 378.09 days and its angular motion is 1/ 378.09 DAYS per day. These synods are, by definition, differential to the Sun at 1/ 365.2422 DAYS per day.

Without seeing astronomy as calibrated to day and year cycles, one is robbed of much chance to appreciate the megalithic view of time and the time-factored buildings that came to be built in pursuit of quite advanced knowledge.

Looking from the relatively large cycles to the extremely small, daily angular changes of celestial bodies seen from Earth, reveals a further obscuration created, in this case, by the heliocentric view of the solar system, rather than the geocentric view which is obviously founded on days and years seen from the surface of the planet.

The largest cycle the megalithic could see using their techniques, reverses the direction from large-to-small to small-to-large since the precessional cycle (of the equinoctal nodes of the earth’s obliquity) is around 25,800 ± 100 years long. A star or constellation on the ecliptic appears to move east, like the lunar nodes, and using the angular measure of DAYS, it is possible to estimate that the equinoctal points move by a single DAY, in a given epoch, something like 71 years. The precessional cycle is therefore 71 years multiplied by the 365.2422 DAYS of the whole ecliptic.

The most important benefit of using DAY angles is that knowledge of a few celestial periods opens up a realm in which different scales of time can be derived from first principles. And added to that, the celestial periods appear related to one another so that so-called sacred numbers emerge such as the seven day week which divides into both the Saturn synod (54 weeks), Jupiter synod (57 weeks), the 364 day saturnian year (52 weeks) and others.

To understand the full scope of megalithic astronomy requires a geocentric calibration of the ecliptic as having 365¼ angular DAYS.

Day-inch counting at the Manio Quadrilateral

It is 10 years since my brother and I surveyed this remarkable monument which demonstrates what megalithic astronomy was capable of around 4000 BC, near Carnac. The Quadrilateral is the earliest clear demonstration of day-inch counting of the solar year, and lunar year of 12 lunar months, both over three years. The lunar count was 1063.125 day-inches long and the solar 1095.75 day-inches, leaving a difference of 32.625 day-inches. This length was probably the origin of a number of later megalithic yards, which had different uses.

Continue reading “Day-inch counting at the Manio Quadrilateral”

paper: The Origins of Day-Inch Counting

ABSTRACT
This paper presents the theory that in the Megalithic period, around 4500-4000 BCE, astronomical time periods were counted as one day to one inch to form primitive metrological lengths that could then be compared, to reveal the fundamental ratios between the solar year, lunar year, and lunar month and hence define a solar-lunar calendar. The means for comparison used was to place lengths as the longer sides of right angled triangles, leading to a unique slope angle. Our March 2010 survey of Le Manio supports this theory.

St Pierre 1: Jupiter and the Moon

The egg-shaped stone circles of the megalithic, in Brittany by c. 4000 BC and in Britain by 2500 BC, seem to express two different astronomical time lengths, beside each other as (a) a circumference and then (b) a longer, egg-shaped extension of that circle. It was Alexander Thom who analysed stone circles in the 20th century as a hobby, surveying most of the surviving stone circles in Britain and finding geometrical patterns within irregular circles. He speculated the egg-shaped and flattened circles were manipulating pi so as to equal three (not 3.1416) between an initial radius and subsequent perimeter, so making them commensurate in integer units. For example, the irregular circle would have perimeter 12 and a radius of 4 (a flattened circle).

However, when the forming circle and perimeter are compared, these can compare the two lengths of a right-triangle while adding a recurring nature: where the end is a new beginning. Each cycle is a new beginning because the whole geocentric sky is rotational and the planetary system orbital. The counting of time periods was more than symbolic since the two astronomical time periods became, by artifice, related to one another as two integer perimeters that is, commensurate to one another, as is seen at St Pierre (fig.3).

Continue reading “St Pierre 1: Jupiter and the Moon”