The Kaaba appears to express a geometrical progression of adjacent odd numbers starting with one and three. This differs from the super-particular ratios found within the right triangles of astronomical time periods formed by the Megalithic, in which the ratio pairs separated by only one rather than by two, between only odd numbers. However, the multiple-square rectangles used by the megalithic to approximation celestial ratios, made use of the three-square rectangle. In one of the smallest of these rectangles, it simultaneously approximates two pairs of ratios: The eclipse year (346.62 days) to the solar year (365.2422 days) and the solar year to the thirteen lunar month year (384 days).

Continue reading “Form implied by the Kaaba’s Walls”# Tag: eclipse cycles

## The Cult of Seven Days

*Published in Nexus Magazine in 2004*

When understanding the origins of human knowledge, we tend not to look into the everyday aspects of life such as the calendar, our numbering systems and how these could have developed. However, these components of everyday life hold surprising clues to the past.

An example is the seven day week which we all slavishly follow today. It has been said that seven makes a good number of days for a week and this convenience argument often given for the existence of weeks.

Having a week allows one to know what *day of the week* it is for the purposes of markets and religious observances. It is an informal method of counting based on names rather than numbers. Beyond this however, a useful week length should fit well with the organisation of the year (i.e. the Sun), or the month (i.e. the Moon) or other significant celestial or seasonal cycle. But the seven day week *does not fit in* with the Sun and the Moon.

### The Week and the Year

Continue reading “The Cult of Seven Days”## Story of Three Similar Triangles

*first published on 24 May 2012*

Interpreting *Lochmariaquer *in 2012, an early discovery was of a near-Pythagorean triangle with sides 18, 19 and 6. This year I found that triangle as between the start of the Erdevan Alignments near Carnac. But how did this work on cosmic N:N+1 triangles get started?

Robin Heath’s earliest work, *A Key to Stonehenge* (1993) placed his **Lunation Triangle** within a sequence of three right-angled triangles which could easily be constructed using one megalithic yard per lunar month. These would then have been useful in generating some key lengths proportional to the lunar year:

**the number of lunar months in the solar year,****the number of lunar orbits in the solar year**and**the length of the eclipse year in 30-day months.**

all in lunar months. These triangles are to be constructed using the number series 11, 12, 13, 14 so as to form N:N+1 triangles (see figure 1).

Continue reading “Story of Three Similar Triangles”n.b. In the 1990s the primary geometry used to explore megalithic astronomy was N:N+1 triangles, where N could be non-integer, since the lunation triangle was just such whilst easily set out using the 12:13:5 Pythagorean triangle and forming the intermediate hypotenuse to the 3 point of the 5 side. In the 11:12 and 13:14 triangles, the short side is not equal to 5.

## Kerherzo Rectangle near Erdeven & Crucuno

*first published in March 2018*

In 1973, Alexander Thom found the Crucuno rectangle to have been
“accurately placed east and west” by its megalithic builders, and
“built round a rectangle 30 MY [megalithic yards] by 40 MY” and that
“only at the latitude of Crucuno could the diagonals of a 3, 4, 5
rectangle indicate at both solstices the azimuth of the sun rising and setting
when it appears to rest on the horizon.” In a *recent article* I found metrology was used between the Crucuno
dolmen (within Crucuno) and the rectangle in the east to count 47 lunar months,
since this closely approximates 4 eclipse years (of 346.62 days) which is the
shortest eclipse prediction period available to early astronomers.

About 1.22 miles northwest lie the alignments sometimes called Erdeven, on the present D781 before the hamlet Kerzerho – after which hamlet they were named by Archaeology. These stone rows are a major complex monument but here we consider only the section beside the road to the east. Unlike the Le Manec Kermario and Kerlestan alignments which start north of Carnac, Erdevan’s alignments are, like the Crucuno rectangle accurately placed east and west.

Continue reading “Kerherzo Rectangle near Erdeven & Crucuno”## Astronomical Rock Art at Stoupe Brow, Fylingdales

first published 28 October 2016

I recently
came across *Rock Art and Ritual *by
Brian Smith and Alan Walker, (subtitled *Interpreting
the Prehistoric landscapes of the North York Moors. *Stroud: History Press
2008. 38.). It tells the story: Following a wildfire of many square miles of
the North Yorkshire Moors, thought ecologically devastating, those interested
in its few decorated stones headed out to see how these antiquities had fared.

### Background

Fire had revealed many more stones carrying rock art or in organised groups. An urgent archaeological effort would be required before the inevitable regrowth of vegetation.

A photo of one stone in particular attracted my attention, at a site called Stoupe Brow (a.k.a. Brow Moor) near Fylingdales, North Yorkshire.

Continue reading “Astronomical Rock Art at Stoupe Brow, Fylingdales”## Lunar Counting from Crucuno Dolmen to its Rectangle

It is not immediately obvious the Crucuno dolmen (figure 1) faces the Crucuno rectangle about 1100 feet to the east. The role of dolmen appears to be to mark the beginning of a count. At Carnac’s Alignments there are large cromlechs initiating and terminating the stone rows which, more explicitly, appear like counts. The only (surviving) intermediate stone lies 216 feet from the dolmen, within a garden and hard-up to another building, as with the dolmen (see figure 2). This length is interesting since it is twice the longest inner dimension of the Crucuno rectangle, implying that lessons learned in interpreting the rectangle might usefully apply when interpreting the distance at which this outlier was placed from the dolmen. Most obviously, the rectangle is 4 x 27 feet wide and so the outlier is 8 x 27 feet from the dolmen.

Continue reading “Lunar Counting from Crucuno Dolmen to its Rectangle”