Medieval Solfeggio within the Heptagonal Church of Rieux Minervois

This paper responds to Reichart and Ramalingam’s study of three heptagonal churches[1], particularly the 12th century church at Rieux Minervois in the Languedoc region of France (figure 1a).

image: The Church in situ

Reichart and Ramalingam discuss the close medieval association of the prime number seven[2] with the Virgin Mary, to whom this church was dedicated. The outer wall of the original building still has fourteen vertical ribs on the inside, each marking vertices of a tetraheptagon, and an inner ring of three round and four vertex-like pillars (figure 1b) forming a heptagon that supports an internal domed ceiling within an outer heptagonal tower. The outer walls, dividable by seven, could have represented an octave and in the 12th century world of hexachordal solmization (ut-re-mi-fa-sol-la [sans si & do])[3]. The singing of plainchant in churches provided a melodic context undominated by but still tied to the octave’s note classes. Needing only do-re-mi-fa-sol-la, for the three hexachordal dos of G, C and F, the note letters of the octave were prefixed in the solmization to form unique mnemonic words such as “Elami”.It is therefore possible that a heptagonal church with vertices for the octave of note letters would have been of practical use to singers or their teachers.

The official plan of Rieux Minervois

12th Century Musical Theory

In the 10th Century, the Muslim Al-Kindi was first to add two tones to the Greek diatonic tetrachord of two tones and single semitone (T-T-S) and extend four notes to the six notes of our ascending major scale, to make TTSTT. This system appeared in the Christian world (c. 1033) in the work of Guido of Arezzo, a Benedictine monk who presumably had access to Arabic translations of al-Kindi and others [Farmer. 1930]. Guido’s aim was to make Christian plainsong learnable in a much shorter period, employing a dual note and solfege notation around seven overlapping hexachords called solmization. Plainsongs extending over one, two or even three different hexachords could then be notated.

Continue reading “Medieval Solfeggio within the Heptagonal Church of Rieux Minervois”

Cologne Cathedral Facade as Double Square

image: The Gothic cathedral of Cologne by night, by Robert Breuer CC-SA 3.0

On the matter of facades of Gothic cathedrals, I hark back to previous work (February 2018) on Cologne cathedral. This was published in a past website that was destroyed by its RAID backup system!

As we have seen with Chartres, some excellent lithographs with scales can often exist online from which one can interpret their sacred geometrical form and even the possible measures used to build that form. The Gothic norm for a facade seem more closely followed at Cologne facade which has two towers of (nearly) equal height.

We saw at Chartres that an underlying geometry using multiple squares may have been used to define a facade and bend it towards a suitable presentation of astronomical time, in a hidden world view that God’s heaven for the Earth is actually to be found in the sky as a pattern of time. This knowledge emerged with the megaliths and, in the medieval, it appeared again in monumental religious buildings built by masons who had inherited a passed-down but secret tradition.

A Prologue to Cathedral Music

Continue reading “Cologne Cathedral Facade as Double Square”

Gurdjieff, Octave Worlds & Tuning Theory (2019)

This is a paper I suggested for the All and Everything conference in Cumbria, but it was not selected. It developed a number of strands, which I offer here as a snapshot of my thinking and research around 2019. This text was modified to become appendix 3 of my Sacred Number and the Language of the Angels (2021).

Abstract

The first part presents what has only recently become known about ancient musical theory, to better understand the All and Everything of Gurdjieff’s intellectual output. This must include In Search of the Miraculous (Search, 1916-18) Beelzebub’s Tales (Tales, 1949) and Meetings with Remarkable Men (Meetings, 1963). In part 2 ancient monuments are shown to record a ‘lateral octave’ connecting humanity to the planetary world, 24. Part 3 explores the significance of the Moon in Gurdjieff’s lectures and writing. An appendix reviews the conventional virtues of the Moon as accepted by modern science, stabilising earth, enabling life and beings such as we, to evolve into appropriate habitats.

Contents

Abstract 1
Introduction. 3
Part 1: Ideas relating to a ‘science of vibrations’
The Role of Octaves
LikelySources of Gurdjieff’s Harmonic ‘Ideas’
Did Gurdjieff understand Numerical Tuning Theory?
Was Gurdjieff a Pythagorean?
Pythagorean Tuning
Greek versus Chinese Tuning?

Part 2: Where are the Lateral Octaves?
Part 3: The Significance of the Moon
Appendix 1: A Moon that created Life?
Appendix 2: Reference Charts from Search
Appendix 3: Index of the Moon in Search & Tales
Moon in Search
Moon in Tales
Bibliography

Introduction

Publications about Gurdjieff’s ideas appeared after he and Ouspensky had died. The main works of Gurdjieff’s words are Search, Tales and Meetings. Beyond these lie autobiographical books and compendia of Gurdjieff’s ideas, by his students. Some of his students also looked into traditional sources such as Sufism and Vedanta, and followed up on new scholarship relating to cosmological ideas such as world mythology (Hamlet’s Mill, The Greek Myths); the number sciences of Pythagorean schools and Plato (Source books); ancient buildings (Megalithic Sites in Britain, Ancient Metrology, The Temple of Man); and musical tuning theory (The Myth of Invariance, Music and the Power of Sound).

Continue reading “Gurdjieff, Octave Worlds & Tuning Theory (2019)”

Primacy of low whole numbers

  1. Preface
  2. Primacy of low whole numbers
  3. Why numbers manifest living planets
  4. Numbers, Constants and Phenomenology
  5. Phenomenology as an Act of Will

Please enjoy the text below which is ©2023 Richard Heath: all rights reserved.

What we call numbers start from one, and from this beginning all that is to follow in larger numbers is prefigured in each larger number. And yet, this prefigurement, in the extensive sense {1 2 3 4 5 6 7 etc.}, is completely invisible to our customary modern usage for numbers, as functional representations of quantity. That is, as the numbers are created one after another, from one {1}, a qualitative side of number is revealed that is structural in the sense of how one, or any later number, can be divided by another number to form a ratio. The early Egyptian approach was to add a series of unitary ratios to make up a vulgar* but rational fraction. This was, for them, already a religious observance of all numbers emerging from unity {1}.  The number zero {0} in current use represents the absence of a number which is a circle boundary with nothing inside. The circle manifesting {2} from a center {1} becomes the many {3 4 5 6 7 …}.

The number one manifests geometrically as the point (Skt “bindu”) but in potential it is the cosmological centre of later geometries, the unit from which all is measured and, in particular, the circle at infinity.

Two: Potential spaces

Continue reading “Primacy of low whole numbers”

Music, part 1: Ancient and Modern

We would know nothing of music were it not that somewhere, between the ear and our perceptions, what we actually hear (the differences between different frequencies of sound, that is, different tones) is heard as equivalent musical intervals (such as fifths, thirds, tones, semitones, etc), of the same size, even when the pitch range of the tones are different. This is not how musical strings work, where intervals of the same size get smaller as the pitch at which tones occur, grows larger. On the frets of a guitar for instance, if one plays the same intervals in a different key, the same musical structure, melodic and harmonic, is perfectly transposed, but the frets are spaced differently.

The key is that human hearing is logarithmic and is based upon the number two {2}, the “first” interval of all, of doubling. This can only mean that the whole of the possibilities for music are integral to human nature. But this miraculous gift of music, in our very being, is rarely seen to be that but, rather, because of the ubiquity of music, especially in the modern world, the perception of music is not appreciated as, effectively, a spiritual gift.

Music is often received as a product like cheese, in that it is to be eaten but, to see how this cheese is made from milk requires us to see, from its appearance as a phenomenon, what music perception is made up of . Where does music come from?

Normally a part of musicology, that subject is full of logical ambiguities, confusing terminology, unresolved opinions, and so on. Those who don’t fully understand the role of number in making music work, concentrate on musical structures without seeing that numbers must be the only origin of music.

The ancient explanation of music was that everything comes out of the number one {1}, so that octaves appear with the number two {2/1}, fifths from three {3/2}, fourths from four {4/3}, thirds from five {5/4} and minor thirds from six {6/5}. Note that, (a) the interval names refer to the order of resulting note within an octave, (b) that intervals are whole number ratios differing by one and that, (c) the musical phenomenon comes out of one {1}, and not out of zero {0}, which is a non-number invented for base ten arithmetic where ten {10} is one ten and no units.

Another miracle appears, in that the ordinal numbers {1 2 3 4 5 6 7 8 9 etc.} naturally create, through their successiveness, all the larger intervals before the seventh number {1 2 3 4 5 6 7} leaving the next three {8 9 10} to create two types of tone {9/8 10/9} and a semitone {16/15} thereafter {11 12 13 14 15 16}: by avoiding all those numbers whose factors are not the first three primes {2 3 5}. Almost the whole potential of western music is therefore built out of the smallest numbers!

This simplicity in numbers has now been obscured, though the structure of music remains in the Equal Temperament form of tuning evolved in the last millennium. By having twelve equal semitones that sum to the number two, we can now transpose melodies between keys (of the keyboard) but we have pretty much lost the idea of scales. Instead, each key is the major diatonic {T T S T T T S} (where T = tone and S = semitone intervals) starting from a different key. The fifth is called dominant and fourth subdominant and the black notes (someway fiendish to learn) required to achieve the major key in all keys but C which is all white keys.

The old church scales are achievable by over ruling the clef with accidental notes, and the reason for different keys sounding different is that they contain aspects of what were the scales. So a pop song, for example, is usually in a scale. “Bus Stop” by the Hollies was in the Locrian scale.

Equal Temperament enabled the Western tradition to create its Classical repertoire but it has made ancient musical theory very distant and has abandoned the exact ratios it used to use since every semitone is identical and irrational. Plato described this kind of solution as the best compromise, where every social class of musical numbers has sacrificed some thing of their former self in order to achieve the riches versatility bestows upon modern musical composition.

To be continued.

Music of the Olmec Heads

Seventeen colossal carved heads are known, each made out of large basalt boulders. The heads shown here, from the city of San Lorenzo [1200-900 BCE], are a distinctive feature of the Olmec civilization of ancient Mesoamerica. In the absence of any evidence, they are thought to be portraits of individual Olmec rulers but here I propose the heads represented musical ratios connected to the ancient Dorian heptachord, natural to tuning by perfect fifths and fourths. In the small Olmec city of Chalcatzingo [900-500BCE] , Olmec knowledge of tuning theory is made clear in Monument 1, of La Reina the Queen (though called El Rey, the King, despite female attire), whose symbolism portrays musical harmony and its relationship to the geocentric planetary world *(see picture at end).

* These mysteries were visible using the ancient tuning theories of Ernest G. McClain, who believed the Maya had received many things from the ancient near east. Chapter Eight of Harmonic Origins of the World was devoted to harmonic culture of the Olmec, the parent culture of later Toltec, Maya, and Aztec civilizations of Mexico.

Monument 5 at Chatcatzinga has the negative shape of two rectangles at right angles to each other, with radiating carved strips framing the shape like waves emanating from the space through which the sky is seen. The rectangles are approximately 3 by 5 square or of a 5 by 5 square with its corner squares removed.

Monument 5 at Chalcatzingo is a framed hollow shape. The multiple squares have been added to show that, if the inner points are a square then the four cardinal cutouts are described by triple squares.

The important to see that the Olmec colossal heads were all formed as a carved down oval shape, that would fit the height to width ratio of a rectangular block. For example, three heads from San Lorenzo appear to have a ratio 4 in height to 3 in width, which in music is the ascending fourth (note) of our modern diatonic (major or Ionian) scale.

Even narrower is the fourth head at San Lorenzo, whose height is three to a width of two. This is the ratio of the perfect fifth, so called as the fifth note of the major scale.

And finally (for this short study), the ratio 6/5 can be seen in Head 9 of San Lorenzo and also at La Venta’s Monument 1 (below).

MUSICAL RATIOS

If the heads were conceived in this way, the different ratios apply when seen face on. The corners of the heads were probably rounded out from a supplied slab with the correct ratio between height and width. The corners would then round-out to form helmets and chins and the face added.

And as a group, the six heads sit within in a hierarchy of whole number ratios, each between two small numbers, different by one. At San Lorenzo, Head 4 looks higher status than Head 9 and this is because of its ratio 3/2 (a musical fifth or cubit), relative to the 6/5 of Head 9. We now call the fifth note dominant while the fourths (Heads 1, 5 and 8) are called subdominant. These two are the foundation stones of Plato’s World Soul {6 8 9 12}, within a low number octave {6 12} then having three main intervals {4/3 9/8 4/3}* where 4/3 times 9/8 equals 3/2, the dominant fifth.

*Harmonic numbers, more or less responsible for musical harmony, divide only by the first three primes {2 3 5} so that the numbers between six and twelve can only support four harmonic numbers {8 9 10}

San Lorenzo existed between 1200 to 900 BCE, and in the ancient Near East there are no clear statements for primacy of the octave {2/1}, nor was it apparent in practical musical instruments before the 1st Millennium BCE, according to Richard Dumbrill: Music was largely five noted (pentatonic) and sometimes nine-noted (enneadic) with two players. However, the eight notes of the octave could instead be arrived at, in practice, by the ear, using only fifths and fourths to fill out the six inner tones of a single octave; starting from the highest and lowest tones (identical sounding notes differing by 2/1). A single musical scale results from a harp tuned in this way: the ancient heptachord: it had two somewhat dissonant semitone (called “leftovers” in Greek), intervals seen between E-F and B-C on our keyboards (with no black note between). Our D would then be “do“, and the symmetrical scale we today call Dorian.

The order of the Dorian scale is tone, semitone, tone, tone, tone, semitone, tone {T S T T T S T} and the early intervals of the Dorian {9/8 S 6/5 4/3 3/2} are the ratios also found in these Olmec Heads*. The ancient heptachord** could therefore have inspired the Olmec Heads to follow the natural order tuned by fourths and fifths.

*I did not consciously select these images of Heads but rather, around 2017, they were easily found on the web. Only this week did I root out my work on the heads and put them in order of relative width.

**here updated to the use of all three early prime numbers {2 3 5} and hence part of Just Intonation in which the two semitones are stretched at the expense of two tones of 9/8 to become 10/9, a change of 81/80.
(The Babylonians used all three of these tones in their harmonic numbers.)

To understand these intervals as numbers required the difference between two string lengths be divided into the lengths of the two strings, this giving the ratio of the Head in question. The intervals of the heptachord would become known and the same ratios achieved within the Heads, carved out as blocks cut out into the very simple rectangular ratios, made of multiple squares.

The rectangular ratio of Head 4, expressed within multiple squares as 3 by 2.

The early numbers have this power, to define these early musical ratios {2/1 3/2 4/3 5/4 6/5}, which are the large musical tones {octave fifth fourth major-third minor-third}. These ratios are also very simple rectangular geometries which, combined with cosmological ideas based around planetary resonance, would have quite simply allowed Heads to be carved as the intervals they represented. The intervals would then have both a planetary and musical significance in the Olmec religion and state structure.

Frontispiece to Part Three of Harmonic Origins of the World: War in Heaven
The seven caves of Chicomoztoc, from which arose the Aztec, Olmec and
other Nahuatl-speaking peoples of Mexico. The seven tribes or rivers of the old world are here seven wombs, resembling the octaves of different modal scales, and perhaps including two who make war and sacrifice to overturn/redeem/re-create the world.

A Musical Cosmogenesis

Everything in music comes out of the number one, the vibrating string, which is then modified in length to create an interval. Two strings at right angles, held within a framework such as Monument 5 (if other things like tension, material, etc.were the same) would generate intervals between “pure” tones. However Monument 5 is not probably symbolic but rather, it was probably laid flat like a grand piano (see top illustration). Wooden posts could hold fixings, to make a framework for one (or more) musical strings of different length, at right angles to a reference string. This would be a duo-chord or potentially a cross-strung harp. Within the four inner points of Monument 5 is a square notionally side length. In the image of Monument 1, and variations in height and width from the number ONE were visualized in stone as emanating waves of sound.

The highest numbers lead to the smallest ratio of 6/5 then the 6/5 ratio of Head 9 can be placed with five squares between the inner points and the 3/2 ratio of Head 2 then fills the vertical space left open within Chalcatzingo’s Monument 5.

Monument 5’s horizontal gap can embrace the denominator of a Head’s ratio (as notionally equal to ONE) so that the inner points define a square side ONE, and the full vertical dimension then embraces the 3/2 ratio of the tallest, that of Head 2.

It may well be that this monument was carved for use in tuning experiments and was then erected at Chalcatzingo to celebrate later centuries of progress in tuning theory since the San Lorenzo Heads were made. By the time of Chalcatzingo, musical theory appears to have advanced, to generate the seven different scales of Just intonation (hence the seven caves of origin above), whose smallest limiting number must then be 2880 (or 4 x 720), the number presented (as if in a thought bubble) upon the head of a royal female harmonist (La Reina), see below. She is shown seeing the tones created by that number, now supporting two symmetrical tritones. The lunar eclipse year was also shown above her head (that is, in her mind) as the newly appeared number 1875, at that limit. This latter story probably dates around 600 BCE. This, and much more besides, can be found in my Harmonic Origins of the World, Chapter Eight: Quetzcoatl’s Brave New World.

Figure 5.8 Picture of an ancient female harmonist realizing the matrix for 144 x 20 = 2880. If we tilt our tone circle so that the harmonist is D and her cave is the octave, then the octave is an arc from bottom to top, of the limit. Above and below form two tetrachords to A and D, separated by a middle tritone pain, a-flat and g-sharp. Art by by Michael D Coe, 1965: permission given.