In my academia.edu paper on lunar simulators, based upon the surviving part of a circular structure at Le Manio (Carnac, Brittany), a very simple but poor approximation to PI could be assumed, of 82/26 (3.154) since there seem to have been 82 stones in the circle and the diameter was 26 of the inter-stone distance of 17 inches. The number 82 is significant to simulation of the moon’s orbit since that orbit is very nearly 27 and one third days long (actually 27.32166 days). In three orbits therefore, there are almost exactly 82 days and in day-inch counting that is 82 day-inches. Also of interest is the fact that in three orbits, the exact figure would be 81.965 day-inches which approaches the megalithic rod of 2.5 MY as 6.8 feet.

Continue reading “82: A Natural Accurate Pi related to Megalithic Yard”# Tag: Le Manio Quadrilateral

## Astronomical Time within Clava Cairns

In North East Scotland, near Inverness, lies Balnuaran of Clava, a group of three cairns with a unique and distinctive style, called Clava cairns; of which evidence of 80 examples have been found in that region. They are round, having an inner and outer kerb of upright stones between which are an infill of stones. They may or may not have a passageway from the outer to the inner kerb, into the round chamber within. At Balnuaran, two have passages on a shared alignment to the midwinter solstice. In contrast, the **central ring cairn** has no passage and it is staggered *west *of that shared axis.

This off-axis ring cairn could have been located to be illuminated by the **midsummer sunrise** from the **NE Cairn**, complementing the midwinter sunset to the south of the two passageways of the other cairns. Yet the primary and obvious focus for the Balnuaran complex is the midwinter sunset down the aligned passages. In fact, the ring cairn is more credibly aligned to the lunar minimum standstill of the moon to the south – an alignment which dominates the complex since, in that direction the horizon is nearly flat whilst the topography of the site otherwise suffers from raised horizons.

## Three Lunar Orbits as 82 day-inches

*Sacred Number and the Lords of Time* interpreted Thom’s megalithic fathom of 6.8 feet (as 2.72 feet times 2.5) found at Carnac’s Alignments as a useful number of 82 day-inches between stones in the stone rows of Le Menec. After 82 days, the moon is in almost exactly the same place, amongst the stars, because its orbit of 27.32166 days is nearly 27 and one third days. Three orbits sums to nearly 82 days. But the phase of the moon at that repeated place in the sky will be different.

## Story of Three Similar Triangles

*first published on 24 May 2012*

Interpreting *Lochmariaquer *in 2012, an early discovery was of a near-Pythagorean triangle with sides 18, 19 and 6. This year I found that triangle as between the start of the Erdevan Alignments near Carnac. But how did this work on cosmic N:N+1 triangles get started?

Robin Heath’s earliest work, *A Key to Stonehenge* (1993) placed his **Lunation Triangle** within a sequence of three right-angled triangles which could easily be constructed using one megalithic yard per lunar month. These would then have been useful in generating some key lengths proportional to the lunar year:

**the number of lunar months in the solar year,****the number of lunar orbits in the solar year**and**the length of the eclipse year in 30-day months.**

all in lunar months. These triangles are to be constructed using the number series 11, 12, 13, 14 so as to form N:N+1 triangles (see figure 1).

Continue reading “Story of Three Similar Triangles”n.b. In the 1990s the primary geometry used to explore megalithic astronomy was N:N+1 triangles, where N could be non-integer, since the lunation triangle was just such whilst easily set out using the 12:13:5 Pythagorean triangle and forming the intermediate hypotenuse to the 3 point of the 5 side. In the 11:12 and 13:14 triangles, the short side is not equal to 5.

## Harmonic Astronomy within Seascale Flattened Circle

*first published in July 2018*

Only two type-D stone circles (see figure 3) are known to exist, called Roughtor (in Cornwall) and Seascale (in Cumbria). Seascale is assessed below, for the potential this type of flattened circle had to provide megalithic astronomers with a calendrical observatory. Seascale could also have modelled the harmonic ratios of the visible outer planets relative to the lunar year. Flattened to the north, Seascale now faces Sellafield nuclear reprocessing plant (figure 1).

Stone Age astronomical monuments went through a series of evolutionary phases: in Britain c. 3000 BC, stone circles became widespread until the Late Bronze Age c. 1500 BC. These stone circles manifest aspects of Late Stone Age art (10,000 – 4500 BC) seen in some of its geometrical and symbolic forms, in particular as calendrical day tallies scored on bones. In pre-literate societies, visual art takes on an objective technical function, especially when focussed upon time and the cyclic phenomena observed within time. The precedent for Britain’s stone circle culture is that of Brittany, around Carnac in the south, from where Megalithic Ireland, England and Wales probably got their own megalithic culture.

Continue reading “Harmonic Astronomy within Seascale Flattened Circle”## Megalithic application of numeric time differences

Natural time periods between celestial phenomena
hold powerful insights into the numerical structure of time, insights which
enabled the megalith builders to access an explanation of the world unlike our
own. When looking at two similarly-long time-periods, the megalithic focussed
on the *difference* between them, these
causing the two periods to slide in and out of phase, generating a longer
period in which the two celestial bodies exhibit a complete ensemble of
variation, in their relationship to each other. This slippage of phase between
celestial periods holds a pattern purely based upon number, hidden from the
casual observer who does not study them in this way. Such numerical patterns
are only fully revealed through counting time and analysing the difference between
periods numerically.

For example, the solar year is
longer than the lunar year by 10 and 7/8 days (10.875 days) and three solar
years are longer than three lunar years by three times 10.875 days, that is by 32
and 5/8^{th} days (32.625 days), which is 32/29 of a single lunar month
of 29.53 days.

The earliest and only explicit evidence for such a three year count has been found at Le Manio’s Quadrilateral near Carnac (circa 4,000 BCE in Brittany, France) used the inches we still use to count days, a “day-inch” unit then widespread throughout later megalithic monuments and still our inch, 1/12 of the foot [Heath & Heath. 2011]. The solar-lunar difference found there over three years was 32.625 day-inches, is probably the origin of the unit we call the megalithic yard and the megalith builders appear to have adopted this differential length, between a day-inch count over three lunar and solar years, in building many later monuments.

Continue reading “Megalithic application of numeric time differences”