Music, part 1: Ancient and Modern

We would know nothing of music were it not that somewhere, between the ear and our perceptions, what we actually hear (the differences between different frequencies of sound, that is, different tones) is heard as equivalent musical intervals (such as fifths, thirds, tones, semitones, etc), of the same size, even when the pitch range of the tones are different. This is not how musical strings work, where intervals of the same size get smaller as the pitch at which tones occur, grows larger. On the frets of a guitar for instance, if one plays the same intervals in a different key, the same musical structure, melodic and harmonic, is perfectly transposed, but the frets are spaced differently.

The key is that human hearing is logarithmic and is based upon the number two {2}, the “first” interval of all, of doubling. This can only mean that the whole of the possibilities for music are integral to human nature. But this miraculous gift of music, in our very being, is rarely seen to be that but, rather, because of the ubiquity of music, especially in the modern world, the perception of music is not appreciated as, effectively, a spiritual gift.

Music is often received as a product like cheese, in that it is to be eaten but, to see how this cheese is made from milk requires us to see, from its appearance as a phenomenon, what music perception is made up of . Where does music come from?

Normally a part of musicology, that subject is full of logical ambiguities, confusing terminology, unresolved opinions, and so on. Those who don’t fully understand the role of number in making music work, concentrate on musical structures without seeing that numbers must be the only origin of music.

The ancient explanation of music was that everything comes out of the number one {1}, so that octaves appear with the number two {2/1}, fifths from three {3/2}, fourths from four {4/3}, thirds from five {5/4} and minor thirds from six {6/5}. Note that, (a) the interval names refer to the order of resulting note within an octave, (b) that intervals are whole number ratios differing by one and that, (c) the musical phenomenon comes out of one {1}, and not out of zero {0}, which is a non-number invented for base ten arithmetic where ten {10} is one ten and no units.

Another miracle appears, in that the ordinal numbers {1 2 3 4 5 6 7 8 9 etc.} naturally create, through their successiveness, all the larger intervals before the seventh number {1 2 3 4 5 6 7} leaving the next three {8 9 10} to create two types of tone {9/8 10/9} and a semitone {16/15} thereafter {11 12 13 14 15 16}: by avoiding all those numbers whose factors are not the first three primes {2 3 5}. Almost the whole potential of western music is therefore built out of the smallest numbers!

This simplicity in numbers has now been obscured, though the structure of music remains in the Equal Temperament form of tuning evolved in the last millennium. By having twelve equal semitones that sum to the number two, we can now transpose melodies between keys (of the keyboard) but we have pretty much lost the idea of scales. Instead, each key is the major diatonic {T T S T T T S} (where T = tone and S = semitone intervals) starting from a different key. The fifth is called dominant and fourth subdominant and the black notes (someway fiendish to learn) required to achieve the major key in all keys but C which is all white keys.

The old church scales are achievable by over ruling the clef with accidental notes, and the reason for different keys sounding different is that they contain aspects of what were the scales. So a pop song, for example, is usually in a scale. “Bus Stop” by the Hollies was in the Locrian scale.

Equal Temperament enabled the Western tradition to create its Classical repertoire but it has made ancient musical theory very distant and has abandoned the exact ratios it used to use since every semitone is identical and irrational. Plato described this kind of solution as the best compromise, where every social class of musical numbers has sacrificed some thing of their former self in order to achieve the riches versatility bestows upon modern musical composition.

To be continued.

St Peter’s Basilica: A Golden Rectangle Extension to a Square

HAPPY NEW YEAR

above: The Basilica plan at some stage gained a front extension using a golden rectangle. below: Later Plan for St. Peter’s 16th–17th century. Anonymous. Metropolitan Museum.

The question is whether the extension from a square was related the previous square design. The original square seems quite reworked but similar still to the original square. The four gates were transformed into three ambulatories defining four circles left, above, right and centre, see below.

Equal Perimeter models at the center of St Peter’s Basilica

Equal Perimeter Models

The central circle can be considered as 11 units in diameter so that its out-square is then 44 units. The circle of equal perimeter to the square will then be 14 units in diameter and the difference of 3 defines a circle diameter 3 units. The 11-circle represents the Earth while the 3-circle represents the Moon, to very high precision – hence making this model a representative of the Mysteries inherited from deep antiquity; at least the megalithic age and/or early dynastic Egypt, when the earth’s size can be seen in Stonehenge and Great Pyramid. This inner EP model, is diagonal so that the pillars represent four moons.

An outer Equal Perimeter model is in the cardinal directions (this alternation also found in the Cosmati pavement at Westminster Abbey, and inner models are related to the microcosm of the human being relative to the slightly larger model of Moons). The two sizes of Moon define the circles at the center, around St Peter’s monument. The mandala-like character of the Equal Perimeter model give here the impressions of a flower’s petals and leaves.

Golden Rectangles

You may remember a recent post about double squares and golden rectangles, where a half-circle that fits a Square has root 5 diagonal radius which, arced down, generates a golden triangle. It is therefore possible to fit the square part of the original design and draw the circle that fits the half-diagonal of the square as shown below.

The golden extension of the Basilica’s Square Plan

By eye, the square’s side is one {1} and the new side length below is 1/φ and the two together are 1 + 1/φ = φ (D’B’ below) which is the magic of the Golden Mean. This insight can be quantified to grasp this design as a useful generality:

Quantifying how the golden mean rectangles are generating phi (φ)

Establishing the lengths from the unit square and point O, the center of the right hand side. OA’ is then √5/2. When this is arced, the square is placed inside a half circle A’C, BC is √5/2 + 1/2 = 1/φ.

The rectangle sides ACD’B’ are the golden mean relative to the width A’B = 1, the unit square’s side, but that unit side length A’B is the golden mean relative to the side of the golden rectangle BC. In addition the length B’D’ is the golden mean squared relative to BC, the side of the golden rectangle.

Commentary

It seems that the equal perimeter models within the square design of Bramante were adjusted. The golden mean was used to extend the Basilica (originally an Orthodox square building named after St Basil) into a golden rectangle. This could be done by adding the equivalent lesser golden rectangle, relative to the unit square through the properties of the out half-circle from O.

The series of golden rectangles can travel out in four directions, each coming naturally from a single unitary square. The likely threefold symbolic message, added by the extension seems to be the primacy of the unitary square, of St Peter (on whom the Church was to be founded) and of the Pope (as a living symbol of St Peter).

Double Square and the Golden Rectangle

above: Dan Palmateer wrote of this, “it just hit me that the conjunction of the circle to the golden rectangle existed.”

Here we will continue in the mode of a lesson in Geometry where what is grasped intuitively has to have reason for it to be true. It occurred to me that the square in the top hemisphere is the twin of a square in the lower hemisphere, hence this has a relationship to the double square rectangle. So one can (1) Make a Double Square and then (2) Find the center and (3) a radius can then draw the out-circle of a double square (see diagram below).

The diagonal from the centre would be the square root of 5 if the top square is seen as two double squares of unit size, that is (4) Identify the units as nested double squares. One can then see (5) a cross within the circle holding 12 squares, but when (6) the root 5 comes down to the right horizontal then the familiar formula (root(5) – 1)/2 = 0.618 so there are many transcendent (not Fibonacci) versions of the Golden mean within in the diagram as shown below.

The in-circle of the cross, radius 2, shows how one can divide that circle into twelve equal portions as with the Zodiac, matching the twelve squares. The out-circle shows Dan’s insight as eight golden rectangles which, overlap over the four “missing” squares of the 16 square grid, which is a simpler framework for generating this geometry as a Whole.

Working with Prime Numbers

Wikipedia diagram by David Eppstein :
This is an updated text from 2002, called “Finding the Perfect Ruler”

Any number with limited “significant digits” can be and should be expressed as a product of positive and negative powers of the prime numbers that make it up. For example, 23.413 and 234130 can both be expressed as an integer, 23413, multiplied or divided by powers of ten.

What Primes are

Primes are unique and any number must be prime itself or be the product of more than one prime. Having no factors, prime numbers are odd and cannot be even since the number 2 creates all the even numbers, meaning half of the ordinals are not prime once two, the first “number” as such, emerges.

Each number can divide one (or any other number) into that number of parts. In the case of three (fraction 1/3) only one in three higher ordinal numbers (every third after three) will have three in it and hence yield an integer when three divides it.

Four is the first repetition of two (fraction ½) but also the first square number, which introduces the first compound number, the geometry of squares and the notion of area.

Ancient World Maths and Written Language

The products of 2 and 3 give 6, 12, etc., and the perfect sexagesimal like 60, 360 were combined with 2 and 5, i.e. 10, to create the base 60, with 59 symbols and early ancient arithmetic, in the bronze age that followed the megalithic and Neolithic periods.

Continue reading “Working with Prime Numbers”

The Fourfold Nature of Sun and Moon

A previous post explained the anatomy of the primary celestial cycles of the Sun and Moon. The “resting” part of these cycles are the winter solstice (opposite the summer solstice which was today) and the dark moon (which is coming in a week, after the waning half moon day before yesterday). In the resting phase, the cosmological origin is traditionally found, containing all that is to manifest but that is not yet expressed. In this respect, the Big Bang is the equivalent for modern thinking, as the origin of the entire visible and invisible universe seen via modern instrumentation and discoveries.

Life is somehow connected with our large Moon, without which there could have been no living planet. The form of life appears influenced by the moon and its conjunctions with different planets. And without (a) the tides, (b) the tectonic plates supporting continents, and (c) the tilt and spin of the earth; the earth would be static rather than actively supporting the necessary rhythms of Life. A primordial collision created these features of our earth and moon, since the cyclic archetypes provide an essential framework for living beings, to which their bodies are synchronized through circadian and behavioral rhythms.

Continue reading “The Fourfold Nature of Sun and Moon”

Astronomy 3: Understanding Time Cycles

above: a 21-petal object in the Heraklion Museum which could represent the 21 seven-day weeks in the 399 days of the Jupiter synod. [2004, Richard Heath]

One of the unfortunate aspects of adopting the number 360 for calibrating the Ecliptic in degrees is that the megalithic counted time in days and instead saw the ecliptic as divided by the 365¼ days. In transferring to the number 360, with all of its easy factors, 8 x 9 x 5, moderns cannot exploit a key advantage of 365¼ days.

If the lunar orbit takes 27.32166 days then each day the moon moves by 1/27.32166 of the ecliptic every day. For this reason, after 27.32166 days the orbit completes because the Moon’s “year” then equals one as the angular motion has been 27.32166/ 27.32166 = 1.

The same is true of the lunar nodes, which retrograde to the east along the ecliptic in 18.618 years. For this reason one can say, the lunar nodes move by 1/18.618 DAYS (in angle) every day and to travel one DAY in angle, the nodes take 18.618 DAYS per day (needing the new term “node day” equal the 18.618 days.*** A solar year takes 19.618 node days (since 365¼ equals 18.618 x 19.618) and an eclipse year takes 18.618 x 18.618 – 346.62 days

*** These are average figures since the moon comes under variable gravitational influences that are episodic.

A general rule emerges in which the larger, whole cycles, lead to reciprocals which can be numerically characterized by knowing the number of the days in the larger period.

For instance, Jupiter has a synodic excess over the solar year of 398.88 days and this means its angular motion is 1/ 398.88 DAYS per day while Saturn’s synod is 378.09 days and its angular motion is 1/ 378.09 DAYS per day. These synods are, by definition, differential to the Sun at 1/ 365.2422 DAYS per day.

Without seeing astronomy as calibrated to day and year cycles, one is robbed of much chance to appreciate the megalithic view of time and the time-factored buildings that came to be built in pursuit of quite advanced knowledge.

Looking from the relatively large cycles to the extremely small, daily angular changes of celestial bodies seen from Earth, reveals a further obscuration created, in this case, by the heliocentric view of the solar system, rather than the geocentric view which is obviously founded on days and years seen from the surface of the planet.

The largest cycle the megalithic could see using their techniques, reverses the direction from large-to-small to small-to-large since the precessional cycle (of the equinoctal nodes of the earth’s obliquity) is around 25,800 ± 100 years long. A star or constellation on the ecliptic appears to move east, like the lunar nodes, and using the angular measure of DAYS, it is possible to estimate that the equinoctal points move by a single DAY, in a given epoch, something like 71 years. The precessional cycle is therefore 71 years multiplied by the 365.2422 DAYS of the whole ecliptic.

The most important benefit of using DAY angles is that knowledge of a few celestial periods opens up a realm in which different scales of time can be derived from first principles. And added to that, the celestial periods appear related to one another so that so-called sacred numbers emerge such as the seven day week which divides into both the Saturn synod (54 weeks), Jupiter synod (57 weeks), the 364 day saturnian year (52 weeks) and others.

To understand the full scope of megalithic astronomy requires a geocentric calibration of the ecliptic as having 365¼ angular DAYS.