Origins of the Olmec/Maya Number Sciences

ABOVE: Stela C from Tres Zapotes roughly rebuilt by Ludovic Celle and based on a drawing by Miguel Covarrubias.

Introduction

The policy of archaeology regarding the Maya and their root progenitor the Olmec (1500 BCE onwards) is that its cultural innovations were made within Mexico alongside an agrarian revolution of the three sisters, namely squash, maize (“corn”), and climbing beans. This relationship of agriculture to civilizing skills then reads like the Neolithic revolution in Mesopotamia after 4000 BCE, where irrigation made the fertile loam able to absorb agricultural innovations from the northern golden triangle leading to writing, trade, city states, religion, arithmetic and so on. However, the idea that the ancient near east or India could have been an influence through ocean conveyors, of currents and trade winds, has never been accepted when proposed. Yet there are good reasons to think this since the astronomy and monumentalism of the pre-Columbian Mexican civilizations has precedents in the ancient near east and other locations.

The timing of the Olmec and the strangeness of immediately building sacred cities with an almost captive population of around 10,000 people, such as La Venta and San Lorenzo, with strong Jaguar imagery and practices, implies a cultic basis was present from the beginning. And it is now looking likely that the ancient near east was similarly prefigured, not just by agriculture but also by know how involving numbers for the building of sacred buildings with astronomical aspects – a tradition that goes back at least to the megalithic of the Atlantic seaboard of Europe.

Since Columbus, the native populations of North and South America have been largely displaced or marginalized. It may be for this reason that the notion that people from an advanced population had initiated the Olmec civilization requires a high, possibly impossible, level of proof. This Isolationism***, perhaps to avoid “adding insult to injury”, is against the Olmec having derived from the Old World, where the historical records are not that much better. The Olmec origin date is around the time of the quite sudden collapse of the Bronze Age in the Mediterranean around 1200 BCE. And the Olmec, Maya and Aztec appear to have had a definite myth concerning someone called Quetzelcoatl bringing civilizing skills to found their culture, though their culture was also seen as arising from a group of seven underground caves.

***The opposite of Diffusionism: Diffusionism is an anthropological school of thought, was an attempt to understand the distribution of culture in terms of the origin of culture traits and their spread from one society to another. Versions of diffusionist thought included the conviction that all cultures originated from one culture center (heliocentric diffusion); the more reasonable view that cultures originated from a limited number of culture centers (culture circles); and finally the notion that each society is influenced by others but that the process of diffusion is both [subject to chance] and arbitrary . read more

Long Counts and The LUNAR Calendar

Having sketched this background, this article will explore a strange coincidence between the calendrical origins of the Megalithic in Brittany, of a 36 lunar month, 3 lunar year calendar, and the 18 month calendar found in the some of the later Olmec Great Counts, called after the Supplementary Glyphs appended to record the local time in an 18 lunar month calendar. The correlation between long counts and the supplementary data has been invaluable since the long counts can be ambiguous between one or more possible dates but we can predict the sun and moon that far back can compare the glyphs with the alternative dates. Counts have also been found that were eclipses of the sun or moon, resolving a given long count date. It is therefoe interesting to compare the two calendars using the geometrical fact that 36 lunar months is both 2 x 18, 4 x 9 and 3 x 12 since 36 is 4 x 3 x3.

The implication is that the megalithic calendar over three years, which was based upon noticing that three solar years was the diagonal of a four square triangle whose side length is three lunar years, appears to have resulted in an Olmec/Maya calendar in which each square is 9 lunar months. As was noted in previous books (2004, 2016, 2018), the range 9 to 18 years contains a single lunar month {12}, the Jupiter synod {13.5}, the Saturn synod {12.8} and the Uranus synod {12.5}. This octave range between 9 and 2 x 9 = 18 was therefore possible to manifest as a Mexican city design (Teotihuacan) and as the Parthenon of Athens. A number of other examples can be found as one of the proposed major models used from the megalithic onwards, as discussed in Sacred Number: Language of the Angels (2021).

Parthenon as a New Model of the Meridian

This was published as The Geodetic And Musicological Significance Of The Shorter Side Length Of The Parthenon As Hekatompedon Or ‘Hundred-Footer’ in Music and Deep Memory: Speculations in ancient mathematics, tuning, and tradition, in memoriam Ernest G. McClain. Edited by Bryan Carr and Richard Dumbrill. pub: Lulu. photo: Steve Swayne  for Wikipedia on Parthenon.

This note responds to Kapraff and McClain’s preceding paper, in which they discover a many-faceted musical symbolism in the Parthenon. Specifically,  Ernst  Berger’s  new measurements include the shorter side of the triple pedestal of the monument as an accurate length to represent one second of the double meridian of the earth. By applying a knowledge of ancient metrology, Anne Bulckens’ doctoral derivations of a root foot can resolve to a pygme of 9/8 feet, of which one second of latitude would contain 90 such feet. However, as a ‘hundred footer’, the foot  length  should  then be 81/80 (1.0125) feet, the ratio  of  the syntonic comma. This would indicate a replacement, by Classical times, of the geographical constant of 1.01376 feet  within the model of the earth since the original model, by the late megalithic, assumed that the meridian was exactly half of the mean circumference of the earth. These alternative geographical constants co-incidentally represent the ubiquitous theme in ancient musicology of the transition between Pythagorean and  Just tunings and their respective commas of Pythagorean 1.01364 … (in metrology 1.01376) and syntonic 81/80 (1.0125).

By Classical times the term hekatompedon or ‘hundred-footer’ had evolved, to describe the ideal dimensionality of Greek peristyle temples. One of the earliest, the Heraion of Samos, came to be 100 feet long by the end of the 8th century[1], in contrast to the surface width of the Parthenon’s stylobyte which had been established as in the range 101.141 (Stuart, c.1750) to 101.341 (Penrose in 1888) feet[2].

Recent measurements in 1982 by Ernst Berger[3] found that the top surface of the stylobyte was just over 101.25 feet wide4 and that the most frequently occurring length was 857.6 mm. Anne Bulckens’[5] corresponding foot measure for this would be a step of 2.5 feet, each of 9/8 (1.125) feet, to within
one part in 2500; a foot length called a pygme within historical metrology, after the size of small men first mentioned when Herakles was travelling back from India6. The shorter ends of the Parthenon’s stylobyte would then be 90 such feet across.

However, should the two ends be divided by 100, the required foot length of 101.25 feet becomes a microvariation of the English foot, namely 81/80 (1.0125) feet, a ratio identical with the syntonic comma. This is another ratio crucial to the history of ancient tuning theory; being found between pure Pythagorean tones (9/8) and their counterparts within just tuning (10/9); when string lengths are given specific whole number lengths to specify their pitches intellectually.

1. Hurwit, Jeffrey M., (1987), The Art and Culture of Early Greece, 1100-480 B.C., Cornell: Ithaca, 74-77
2. Berriman, A.E., (1953) Historical Metrology, London:
Dent. IX, 116-120.
3. Berger, E., ed. (1986) Parthenon-Kongress Basel, 2 Vols, Mainz: Philipp von Zabern.
4. an average noted by Berriman, 119.
5. Bulckens, A.M. (1999) The Parthenon’s Main Design Proportion and its Meaning, [Ph.D. Dissertation], Geelong: Deakin University, 269 pp. ; (2001) The Parthenon’s Symmetry in Symmetry: Art and Science (Fifth Interdisciplinary Symmetry Congress and Exhibition of the ISIS-Symmetry), (Sydney, 2001), no. 1-2, pp. 38-41.
6. Philostrates of Lemnos (c. 190 – c. 230 AD) Imagines Heracles among the Pygmies, see Loeb Classical Library

A recent article by Jay Kapraff and Ernest McClain[7] observes that the width of the Parthenon symbolically defined one second of latitude (taking surface lengths as linear fractions of latitude). This implies the double meridian length was known within 0.003% of its modern estimation.

A geodetic symbolism was apparently given to shorter side length of the Parthenon, making it smaller than it would have been if modelled on the circumference of the earth as one 3,600th of one 360th part of the mean earth. If so, this geodetic meaning of the Parthenon can be compared with monuments built two thousand years earlier, such as Stonehenge and the Great Pyramid of Giza, within which the relationship of the mean earth was specified, relative to the polar radius, using the same metrological system.

The ancient model of the earth, recovered[8] by John Neal[9] and John Michell[10], used three different approximations of π to model the distortion of
the rotating planet relative to its mean, or perfectly spherical, size. In that model, the Meridian was assumed to be half the circumference of the mean earth of 44 times 126 (131,383.296) feet or 24,883.2 miles. Had the Parthenon’s builders used this model then its ends would be 101.376 feet in width and one hundredth of this would be a foot of 1.01376 feet, the foot known as the ‘Standard Geographical’ Greek foot[11].

The mean circumference of the earth (24,883.2 miles) and the actual double meridian length (24,859.868 miles) are in the same ratio as the geographical foot of 1.01376 (3168/3125) and 1.0125 feet: the 81/80 foot measure that makes the Parthenon’s 101.25 feet a ‘hundred footer’. It is therefore reasonable to assume that, between the building of Stonehenge and Great Pyramid (by 2,500 B.C.) and the building of the Parthenon (designed by 447 B.C.), a more accurate
measurement of the Meridian had superseded the previous assumption, within the old model, that the Meridian was half the length of the mean earth circumference.

7. The Proportional System of the Parthenon, in preparation for the In Memoriam volume for Ernest McClain (1918-2014)
8. Michell by 1980 and Neal, fully formed, by 2000.
9. Neal, John (2000) All Done With Mirrors, Secret Academy, London.
10. Michell, John (1982) Ancient Metrology, Pentacle Books, Bristol, 1982; (2008 new ed.) Dimensions of Paradise, Inner Traditions: Rochester.

Further to this, one can see how the transition from Pythagorean to just tuning systems[12] is strangely present in the relationship between the mean earth circumference and the actual meridian length, since the geographical constant of 1.01376 is near identical to the Pythagorean comma of 1.0136433 while the (chosen) ratio of 1.0125 is the syntonic comma and this, times 100, is near identical to the actual length of one second of latitude which would be 100 times 1.0128 feet[13], just one third of an inch different from a more
modern result.

The Parthenon ‘Hundred footer’ was able to dimensionally reference one second of the Meridian by having its shorter sides one hundred feet of 1.0125 feet long. Aligned to north, this presented accurate Classical knowledge of the
Meridian’s length. The monument expresses other musicological features via its metrology: the 81/80 foot unit is 125/128 of the Athenian foot of 1.0368 feet, a musical interval called the minor diesis, also found within just intonation and equaling the deficiency of three major thirds to the octave

12 The latter prevalent in other aspects of the monument, see Kappraff, J. and McClain, E.G. (2005: Spring–Fall) The Proportions of the Parthenon: A work of musically inspired architecture, Music in Art: International Journal for Music Iconography, Vol. 30/1–2.
13 A non-harmonic 79/78 feet.