image of stone L9, left of corridor of Gavrinis Cairn, 4Km east of Carnac complex. [image: neolithiqueblog] This article was first published in 2012.
One test of validity for any interpretation of a megalithic monument, as an astronomically inspired work, is whether the act of interpretation has revealed something true but unknown about astronomical time periods. The Gavrinis stone L9, now digitally scanned, indicates a way of counting the 18 year Saros period using triangular counters founded on the three solar year relationship of just over 37 lunar months, a major subject (around 4000 BC) of the Le Manio Quadrilateral, 4 Km west of Gavrinis. The Saros period is a whole number, 223, of lunar months because the moon must be in the same phase (full or new) as the earlier eclipse for an eclipse to be possible.
above: a 21-petal object in the Heraklion Museum which could represent the 21 seven-day weeks in the 399 days of the Jupiter synod. [2004, Richard Heath]
One of the unfortunate aspects of adopting the number 360 for calibrating the Ecliptic in degrees is that the megalithic counted time in days and instead saw the ecliptic as divided by the 365¼ days. In transferring to the number 360, with all of its easy factors, 8 x 9 x 5, moderns cannot exploit a key advantage of 365¼ days.
If the lunar orbit takes 27.32166 days then each day the moon moves by 1/27.32166 of the ecliptic every day. For this reason, after 27.32166 days the orbit completes because the Moon’s “year” then equals one as the angular motion has been 27.32166/ 27.32166 = 1.
The same is true of the lunar nodes, which retrograde to the east along the ecliptic in 18.618 years. For this reason one can say, the lunar nodes move by 1/18.618 DAYS (in angle) every day and to travel one DAY in angle, the nodes take 18.618 DAYS per day (needing the new term “node day” equal the 18.618 days.*** A solar year takes 19.618 node days (since 365¼ equals 18.618 x 19.618) and an eclipse year takes 18.618 x 18.618 – 346.62 days
*** These are average figures since the moon comes under variable gravitational influences that are episodic.
A general rule emerges in which the larger, whole cycles, lead to reciprocals which can be numerically characterized by knowing the number of the days in the larger period.
In previous lessons, fixed lengths have been divided into any number of equal parts, to serve the notion of integer fractions in which the same length can then be reinterpreted as to its units or as a numerically different measurement. This allows all sorts of rescaling and exploitation of the properties of integer numbers.
Here we present a megalithic method which extended two or more fixed bearings (or alignments), usually based upon a simple geometrical form such as a triangle or a rectangle. This can be how the larger geometries came to be drawn on the landscape (here called landforms) of separated megaliths and natural features which appear to belong together. For example,
Outliers: Alexander Thom found that British stone circle were often associated with single outliers (standing stones) on a bearing that may correspond to horizon event but equally, appears to give clues to the metrology of the circle in the itinerary length to the outlier from the circle’s centre.
Figure 1 Stone circle plans often indicate nearby outliers and stone circles
Stone circles were also placed a significant distance and bearing away (figure 1), according to geometry or horizon events. This can be seen between Castle Rigg and Long Meg, two large flattened circles – the first Thom’s Type-A and the second his Type-B.
Figure 2 Two large megalithic circles appear linked in design and relative placement according to the geometry of the double square.
Expanding geometrically
The site plan of Castle Rigg (bottom left, fig. 1) can have the diagonal of a double square (in red) emerging between two stones which then bracket the chosen direction. This bearing could be maintained by expanding the double square so that west-to-east and south to north expand as the double and single length of a triangle while the hypotenuse then grows towards the desired spot according to a criteria such as, a latitude different to that of Castle Rigg. That is, at any expansion the eastings and northings are known as well as the distance between the two circles while the alignments, east and northeast in this example, are kept true by alignment to previous established points. Indeed, one sees that the small outlier circle of Long Meg, to Little Meg beyond, was again on the same diagonal bearing, according to the slope angle of the cardinal double square.*** One can call this a type of projective geometry.
***This extensive double square relation between megalithic sites was first developed by Howard Crowhurst, in Ireland between Newgrange and Douth in same orientation as figure 2, and by Robin Heath at https://robinheath.info/the-english-lake-district-stone-circles/.
It seems impossible for such arrangements to have been achieved without modern equipment and so the preference is to call these landforms co-incidental. But, by embracing their intentionality, one can see a natural order between Castle Rigg and, only then, Long Meg’s outlying Little Meg circle, and through this find otherwise hidden evidence of the working methods in the form of erratics or outliers, whose purpose is otherwise unclear.
Equilateral Expansion
The work of Robin Heath in West Wales can be an interesting challenge since not all the key points on his Preseli Vesica are clearly megalithic, perhaps because megaliths can be displaced by settlements or be subsumed by churches, castles and so on. (see Bluestone Magic, chapter 8). First, for completeness, how is a vesica defined today? In his classic Sacred Geometry, Robert Lawlor explains the usual construction and properties of the vesica :
Draw the major and minor axes CD and AB. Draw CA, AD, DB and BC. By swinging arcs of our given radius from either centre A or B we trace along the vesica to points C and D, thus verifying that lines AB, BC, CA, BD and AD are equal to one another and to the radius common to both circles.
We now have two identical equilateral triangles emerging from within the Vesica Piscis. Extend lines CA and CB to intersect circles A and B at points G and F. Lines CG and CF are diameters of the two circles and thus twice the length of any of the sides of the triangles ABC and ABD. Draw FG passing through point D.
Sacred Geometry by Robert Lawlor
Primitive versus later geometry
Lawlor’s presentation have the triangles appearing as the conjuction of two circles and their centers. However, the points and lines of modern geometry translate, when interpreting the megalithic, into built structures or significant features, and the alignments which may join them. The alignments are environmental and in the sky or landscape.
A is Pentre Ifan, a dolmen dating from around 3500 BC.
B is located in the Carningli Hillfort, a mess of boulders below the peak Carningli (meaning angel mountain). Directly East,
C is the ancient village, church and castle of Nevern.
D is a recently excavated stone circle, third largest in Britain at around 360 feet diameter, but now ruinous, call Waun Mawn.
The two equilateral triangles have an average side length around 11,760 feet but, as drawn, each line is an alignment of azimuth 330, 0, 30, and 90 degrees and their antipodes.
The Constructional Order
Relevant here is how one would lay out such a large landform and we will illustrate how this would be done using the method of expansion.
North can be deduced from the extreme elongation of the circumpolar stars in the north, since no pole star existed in 3200BC. At the same time it is possible to align to plus and minus 30 degrees using Ursa Major. This would give the geometry without the geometry so to speak, since ropes 11760 feet long are unfeasible. It seems likely that the Waun Mawn could function as a circumpolar observatory (as appears the case at Le Menec in Brittany, see my Lords of Time).
If the work was to start at Carningli fort, then the two alignments (a) east and (b) to Waun Mawn could be expanded in tandem until the sides were 11760 feet long, ending at the circle to the south and dolmen to the east. The third side between these sites should then be correct.
The vesica has been formed to run alongside the mountain. The new eastern point is a dolmen that points north to another dolmen Llech-y-Drybedd on the raised horizon, itself a waypoint to Bardsey Island.
The reason for building the vesica appears wrapped up in the fact that its alignments are only three, tightly held within a fan of 60 degrees pointing north and back to the south. But the building of the double equilateral cannot be assumed to be related to the circular means of its construction given by Lawlor above. That is, megalithic geometry did not have the same roots as sacred geometry which has evolved over millennia since.
By 2016 it was already obvious that the lunar month (in days) and the PMY, AMY and yard (in inches) had peculiar relationships involving the ratio 32/29, shown above. This can now be explained as a manifestation of day-inch counting and the unusual numerical properties of the solar and lunar year, when seen using day-inch counting.
It is hard to imagine that the English foot arose from any other process than day-inch counting; to resolve the excess of the solar year over the lunar year, in three years – the near-anniversary of sun and moon. This created the Proto Megalithic Yard (PMY) of 32.625 day-inches as the difference.
A strange property of N:N+1 right triangles can then transform this PMY into the English foot, when counting over a single lunar and solar year using the PMY to count months.
What really happens when Earth turns? The rotation of Earth describes periods that are measured in days. The solar year is 365.242 days long, the lunation period 29.53 days long, and so forth.
Extracted from Matrix of Creation, page 42.
Earth orbits the Sun and, from Earth, the Sun appears to move through the stars. But the stars are lost in the brightness of the daytime skies and this obscures the Sun’s progress from human view. However, through observation of the inexorable seasonal changes in the positions of the constellations, the Sun’s motion can be determined.
The sidereal day is defined by the rotation of Earth relative to the stars. But this is different from what we commonly call a day, the full title of which is a tropical day. Our day includes extra time for Earth to catch up with the Sun before another sunrise. Our clocks are synchronized to this tropical day of twenty-four hours (1,440 minutes).
about how the cardinal directions of north, south, east and west were determined, from Sacred Number and the Lords of Time, chapter 4, pages 84-86.
Away from the tropics there is always a circle of the sky whose circumpolar stars never set and that can be used for observational astronomy. As latitude increases the pole gets higher in the north and the disk of the circumpolar region, set at the angular height of the pole, ascends so as to dominate the northern sky at night.
Therefore, the angular height of the pole at any latitude is the same angle we use to define that latitude, and this equals the half angle between the outer circumpolar stars and the pole itself. For example, Carnac has a latitude of 47.5 degrees north so that the pole will be raised by 47.5 degrees above a flat horizon, while the circumpolar region will then be 95 degrees in angular extent.
It is perhaps no accident that the pole is called a pole since to visualize the polar axis one can imagine a physical pole with a star on top, like a toy angel’s wand. The circumpolar region is “suspended” around the pole like a plate “held up” by the pole. Therefore, a physical pole, set into the ground, can be used to view the north pole from a suitable distance south (i.e., with the pole’s top as a foresight for the observer’s backsight). Such an observing pole would probably have been set at the center of a circle drawn on the ground, representing the circumpolar region around the north pole. This arrangement, a gnomon,* existed throughout history but usually presented as part of a sun dial.