Bibliographies

This page will grow as book lists are prepared for the posts. At present a bibliography for ancient metrology is provided.

Ancient Metrology

  1. Berriman, A. E. Historical Metrology. London: J. M. Dent and Sons, 1953.
  2. Heath, Robin, and John Michell. Lost Science of Measuring the Earth: Discovering the Sacred Geometry of the Ancients. Kempton, Ill.: Adventures Unlimited Press, 2006. Reprint edition of The Measure of Albion.
  3. Heath, Richard. Sacred Geometry: Language of the Angels. Vermont: Inner Traditions 2022.
  4. Michell, John. Ancient Metrology. Bristol, England: Pentacle Press, 1981.
  5. Neal, John. All Done with Mirrors. London: Secret Academy, 2000.
  6. —-. Ancient Metrology. Vol. 1, A Numerical Code—Metrological Continuity in Neolithic, Bronze, and Iron Age Europe. Glastonbury, England: Squeeze, 2016 – read 1.6 Pi and the World.
  7. —-. Ancient Metrology. Vol. 2, The Geographic Correlation—Arabian, Egyptian, and Chinese Metrology. Glastonbury, England: Squeeze, 2017.
  8. —-. Ancient Metrology, Vol. 3, The Worldwide Diffusion – Ancient Egyptian, and American Metrology.  The Squeeze Press: 2024.
  9. Petri, W. M. Flinders. Inductive Metrology. 1877. Reprint, Cambridge: Cambridge University Press, 2013.

Recalibrating the Pyramid of Giza

Once the actual height (480 feet) and actual southern base length (756 feet) are multiplied, the length of the 11th degree of latitude (Ethiopia) emerges, in English feet, as 362880 feet. However, in the numeracy of the 3rd millennium BC, a regular number would be used. In the last post, it was noted that John Neal’s discovery of such rectangular numbers to define degrees of latitude, multiplied the pyramid’s pointed height (481.09 feet) by the southern base length (756 feet) to achieve the length of the Nile Delta degree of latitude and, repeating Neal’s diagram relating the key latitudinal degrees of the ancient Model as figure 1, the Ethiopian degree is 440/441 of the Nile Delta degree. As shown above, the length of the 756 foot southern base is changed, when re-measured in the latitudinal feet for Ethiopia; it becomes the harmonic limit of 720 feet of 1.05 feet – normally called the root Persian foot.

Continue reading “Recalibrating the Pyramid of Giza”

Ethiopia within the Great Pyramid

My last posting mentioned John Neal’s creative step of not averaging the Great Pyramid of Giza’s four sides, as had routinely been done in the past – as if to discover an idealized design with four equal sides. Instead, Neal found each length to have intensionally been different. When multiplied by the pyramid’s full height, the length of four different degrees of latitude were each encoded as an area. The length of the southern side is integer as 756 feet, and this referred to the longest latitude, that of the Nile Delta, below 31.5 degrees North. Here we find that the pyramid’s reduced height also indicated the latitude of Ethiopia.

Continue reading “Ethiopia within the Great Pyramid”

pdf: Musicological Narrative Structures in Biblical Genesis

This paper attempts to interpret the first two books of the Bible, according to Ernest McClain’s methods. It is contended that the compositions of ancient texts, as Plato insinuated, were both inspired and used for the science of numerical harmonics.

The invariant properties of harmonic numbers, and their evolution through limiting whole numbers, offer a large variety of distinctive scenarios which can be set into compatible narrative forms such as the Seven Days of Creation, the
Garden of Eden, the Flood, the Patriarchal development of the Twelve Tribes and Moses meeting with YHWH.

Cretan Calendar Disks

I have interpreted two objects from Phaistos (Faistos), both in the Heraklion Museum. Both would work well as calendar objects.

One would allow the prediction of eclipses:

The other for tracking eclipse seasons using the 16/15 relationship of the synod of Saturn (Chronos) and the Lunar Year:

paper: Lunar Simulation at Le Manio

Our survey at Le Manio revealed a coherent arc of radial stones, at least five of which were equally long, equally separated and set to a radius of curvature that suggested a common centre. It appears the astronomers at Le Manio understood that, following three lunar sidereal orbits (after 82 days) the moon would appear again at the same point on the ecliptic at the same time of day