Le Menec: as Sidereal Observatory

Today, an astronomer resorts to the calculation of where sun, moon or star should be according to equations of motion developed over the last four centuries. The time used in these equations requires a clock from which the object’s location within the celestial sphere is calculated. Such locations are part of an implicit sky map made using equatorial coordinates that mirror the lines of longitude and latitude. Our modern sky maps tell us what is above every part of the earth’s sphere when the primary north-south meridian (at Greenwich) passes beneath the point of spring equinox on the ecliptic. Neither a clock, a calculation nor a skymap was available to the megalithic astronomer and, because of this, it has been presumed that prehistoric astronomy was restricted to what could be gleaned from horizon observations of the sun, moon, and planets.

Even though megalithic people could not use a clock nor make our type of calculations, they could use the movement of the stars themselves, including the sun by day, to track sidereal (or stellar) time provided they could bring this stellar time down to the earth. This they appear to have done at Le Menec, using the cromlech’s defining circle, which was built into its design so as to become a natural sidereal clock synchronized to the circumpolar stars.

Figure 4 The Circumpolar Stars looking North from Le Menec in 4000 BCE, when the cromlech was probably built. There is no north star but marker stars travel anti-clockwise and these can align to foresights at their extreme azimuthal “elongation”, as explained below.

The word sidereal means relating to stars and, more usually, to their rotation around the earth observer as if these stars were fixed to a rotating celestial sphere. This rotation is completely reliable as a measure of time since it is stabilized by the great mass of the spinning earth. However, in a modern observatory this sidereal time must be measured indirectly using an accurate mechanical or electronic clock. These clocks can only parallel the rotation of the earth in a sidereal day, which is just under four minutes less than our normal day. Nonetheless, a sidereal day is again given 24 ‘hours’ in our sky maps and it is these hours which are then projected upon the celestial sphere as hours (minutes and seconds) of Right Ascension, hours in the rotation of the earth during one sidereal day.

NEXT: using Circumpolar Marker Stars

CONTENTS

This paper proposes that an unfamiliar type of circumpolar astronomy was practiced by the time Le Menec was built, around 4000 BCE.

  1. Abstract
  2. Start of Carnac’s Alignments
  3. as Sidereal Observatory
  4. using Circumpolar Marker Stars
  5. dividing the Circumpolar stars
  6. maintaining Sidereal Time in Daylight
  7. measuring the Moon’s Progress
  8. as Type 1 Egg
  9. transition from Le Manio
  10. the Octon of 4 Eclipse Years
  11. building of Western Alignments
  12. key lengths of Time on Earth

Chartres 2: the harmony in its towers

In the previous post, the difference in height of the two towers was seen to have an exoteric and an esoteric meaning. Exoterically, the taller tower is sometimes called the sun tower, probably because the globe at its top (below its cross) is about 365 feet-as-days (hence representing the sun and its year). From this fact, the lower tower was considered lunar , since the lunar year is “not as long” and so less high. However, one must go to the top of the cross on the lower tower to achieve the height of 354.367 feet-as-days (hence representing the moon and its year).

This article presents a deeper meaning, that the difference in the full heights of the two towers represents the musical intervals of the synods of Saturn and Jupiter, relative to the lunar year: cunningly encoded within the full height of the solar tower as the Saturn synod of 378 feet-as-days, which is 16/15 of the lunar year. To have made the taller tower higher, to achieve the Jupiter synod, was impractical so that, instead, Jupiter was symbolized by the lunar year of 12 lunar months while Saturn was 12 “months” of 28 days, the 336-foot high globe of the moon tower, as shown below.

Continue reading “Chartres 2: the harmony in its towers”

Chartres 1: the cosmic coding of its towers in height

The lunar crescent atop the “moon” tower’s cross.

Chartres, in north-west France, is a very special version of the Gothic transcept cathedral design. Having burnt down more than once, due to wooden ceilings, its reconstruction over many building seasons and different masonic teams, as funds permitted, would have needed strong organizing ideas to inform the work (as per Master Masons of Chartres by John James).

Continue reading “Chartres 1: the cosmic coding of its towers in height”

Astronomy 4: The Planetary Matrix

The re-discovery of the ancient planetary matrix, seen through three my three books: Matrix of Creation, Harmonic Origins of the World and Sacred Geometry: Language of the Angels.

Harmonic Origins of the World inserted the astronomical observations of my previous books into an ancient harmonic matrix, alluded to using the sacred numbers found in many religious stories and the works of Plato, who might have been the savior of what Pythagoras had garnered from ancient mystery centers circa. 600 BC. According to the late Ernest G. McClain*, Plato’s harmonic technology had been widely practiced in the Ancient Near East so that, to the initiated, the stories were technical whilst, to the general population, they were entertaining and uplifting stories, set within eternity. Ancient prose narratives and poetic allusions conserved the ancient knowledge. Before the invention of phonetic writing in Classical Greece, spoken (oral) stories were performed in public venues. Archaic stories such as those attributed to Homer and Hesiod, gave rise to the Greek theatres and stepped agoras of towns. Special people called rhapsodes animated epic stories of all sorts and some have survived through their being written down. At the same time, alongside this transition to genuine literacy, new types of sacred buildings and spaces emerged, these also carrying the sacred numbers and measures of the megalithic to Classical Greece, Rome, Byzantium and elsewhere, including India and China.

* American musicologist and writer, in the 1970s, of The Pythagorean Plato and The Myth of Invariance. website

Work towards a full harmonic matrix for the planets

Continue reading “Astronomy 4: The Planetary Matrix”

Primacy of low whole numbers

  1. Preface
  2. Primacy of low whole numbers
  3. Why numbers manifest living planets
  4. Numbers, Constants and Phenomenology
  5. Phenomenology as an Act of Will

Please enjoy the text below which is ©2023 Richard Heath: all rights reserved.

What we call numbers start from one, and from this beginning all that is to follow in larger numbers is prefigured in each larger number. And yet, this prefigurement, in the extensive sense {1 2 3 4 5 6 7 etc.}, is completely invisible to our customary modern usage for numbers, as functional representations of quantity. That is, as the numbers are created one after another, from one {1}, a qualitative side of number is revealed that is structural in the sense of how one, or any later number, can be divided by another number to form a ratio. The early Egyptian approach was to add a series of unitary ratios to make up a vulgar* but rational fraction. This was, for them, already a religious observance of all numbers emerging from unity {1}.  The number zero {0} in current use represents the absence of a number which is a circle boundary with nothing inside. The circle manifesting {2} from a center {1} becomes the many {3 4 5 6 7 …}.

The number one manifests geometrically as the point (Skt “bindu”) but in potential it is the cosmological centre of later geometries, the unit from which all is measured and, in particular, the circle at infinity.

Two: Potential spaces

Continue reading “Primacy of low whole numbers”

Numbers of a Living Planet: Preface

The image above is Kurma avatara of Vishnu, below Mount Mandara, with Vasuki wrapped around it, during Samudra Manthana, the churning of the ocean of milk. ca 1870. Wikipedia.

  1. Preface
  2. Primacy of low whole numbers
  3. Why numbers manifest living planets
  4. Numbers, Constants and Phenomenology
  5. Phenomenology as an Act of Will

Please enjoy the text below which is ©2023 Richard Heath: all rights reserved.

It is impossible to talk of a creation outside of the time and space of Existence, though from it, other dimensions can be inferred such as an “Eternity” visible in the invariances of numbers and structures. It is this higher dimensionality that leads to

  1. The recurrence of celestial time periods,
  2. The mental powers to recognise manifested patterns,
  3. The use of spatial geometries of alignment,
  4. The numerate counting of time,
  5. A phenomenology which is neither factual nor imaginary.

The quantification and qualification of Existence, adequately conducted, reveals harmonious structures within time and space, especially in the spacetime of our planetary system, when this system is as seen from our planet. The harmonious nature of our planetary system helped the late stone age to develop a large numerical and geometrical model of the world through counting astronomical recurrences. This model, which shaped ancient texts, implies that solar systems may have an inherent intelligence which makes them harmonious.

Harmony in a planetary system must therefore employ invariances already present in the number field, by exploiting the recurrent orbital interactions between planets and large Moons, this in a connected set of three-body problems. Before our exact sciences and instruments, prehistoric naked-eye astronomers could understand the planetary world by counting the duration of planetary time cycles: the subject my books explore. Through counted lengths of time, the megalithic age came to understand the invariances of the number field and so evolve an early and distinct type of numeracy. This numeracy lived on as the basis for the ancient Mysteries of the early civilizations, embodied in their Temples and in the Pythagorean approach to ordinal numbers and geometries, expressing the “number field” in two or three dimensions, areas and volumes. (see Sacred Geometry: Language of the Angels for an introduction to this)

Continue reading “Numbers of a Living Planet: Preface”