Quantification of Eclipse Cycles

Following on from the last post:
Given the many sub-cycles found in the Moon’s behavior, and the angle of its orbit to the Ecliptic, one would expect the eclipse phenomenon to be erratic or random but in fact eclipses repeat quite reliably over relatively fixed periods that were quantified symbolically by megalithic astronomy, within monuments and by the “sacred” numbers and geometries which encapsulate eclipse cycles, as with many other cycles.

An eclipse cycle repeats, to greater or lesser degree of accuracy, over an integer number of days or months. And because of a lack of conventional arithmetic or notation like our own in the megalithic, the practical representation of a cycle would be a raw count of days or months, using uniform measures, which could then be interpreted by them using (a) the rational fractions of whole unit metrology, (b) the factorization of a measured length by counting within using measuring rods or (c) using right-triangles or half-rectangles, which naturally present trigonometrical ratios; to compare different time cycles.

The Eclipse Year

The solar year (365.242 days) is longer than the lunar year of 12 lunar months (354.367 days) and we know that these, when counted in day-inches, gave the megalithic their yard of 32.625 (32 and 5/8) inches and that, by counting months in megalithic yards over one year, the English foot (of 12 inches) was instead the excess over a single lunar year of the solar year, of 12.368 lunar months. 0.368 in our notation is 7/19 and the megalithic yard is close to 19/7 feet so that counting in months cancels the fraction to leave one foot.

Continue reading “Quantification of Eclipse Cycles”

The Strange Design of Eclipses

We all know about solar eclipses but they are rarely seen, since the shadow of the moon (at one of its two orbital nodes) creates a cone of darkness which only covers a small part of the earth’s surface which travels from west to east, taking hours. For the megalithic to have pinned their knowledge of eclipses to solar eclipses, they would have instead studied the more commonly seen eclipse (again at a node), the lunar eclipse which occurs when the earth stands between the sun and the moon and the large shadow of the earth envelopes a large portion of the moon’s surface, as the moon passes through our planet’s shadow.

This phenomenon of eclipses is the result of many co-incidences:

Firstly, if the orbit of the moon ran along the ecliptic: there would be a solar eclipse and a lunar eclipse in each of its orbits, which are 27 and 1/3 days long.

Secondly, if the moon’s orbit was longer or shorter, the angular size of the sun would not be very similar. The moon’s orbit is not circular but elliptical so that, at different points in the lunar orbit the moon is larger, at other points smaller in angular size than the sun. This is most visible with solar eclipses where some are full or total eclipses, and others eclipse less than the whole solar disc, called annular eclipses.

Thirdly, the ecliptic shape of the moon’s orbit is deformed by gravitational forces such as the bulge of the earth, the sun and planets so that its major axis rotates. When the moon is furthest away (at apogee), its disc exceeds that of the sun. And when the moon is nearest to the earth (at perigee), its disc is smaller than that of the sun. This type of progression is called the precession of the lunar orbit where the major axis travels in the same direction as the sun and moon. This contrasts with the precession of the lunar nodes which also rotate (see later).

Continue reading “The Strange Design of Eclipses”

Time and the Midpoints of the Sun and Moon

Our two luminaries, the sun and moon, share a similar form-in-time, as the seasonal year and the monthly phases of the moon. The form they share is of two extremes of opposite character, and two midpoints between these.

The Solar Extremes: At the solar extremes, the sun rises high in midsummer day and rises to a much lower point in midwinter day, extreme points at which the sun moves very slowly day-by-day these hence called solstices from the Latin, “sun stands still”.

The Lunar Extremes: These are the full moon, meaning its face is completely illuminated by the sun, and the dark moon, when the moon stands by and in front of the sun and so its face is not illuminated but during a rare solar eclipse, the dark disk of the moon can be seen slowly crossing the sun’s face since the moon moves 12.368 times faster than the sun that defines each day.

The Solar Midpoints: These occur when the sun rises exactly east and sets directly west, everywhere on the earth. These moments are called Equinox because the length of the day then equals (in Latin: “equi”) and the length of the night (in Latin, “nox”). In the year these two equinoxes are called Spring, when light and heat from the sun are growing (waxing), and Autumn, when light and heat are diminishing (waning).

The Lunar Midpoints: Like the sun, these are exactly between its extremes, when exactly half the moon’s face is illuminated. In the morning, as the full moon approaches the sun, its gibbous (less-than-circular) face is waning until it reaches the point of half illumination by the sun. In contrast, the dark moon reappears as a crescent moon, pulling away from the sun setting in the evening.

The common factor between the midpoints of both sun and moon is that this is when time begins, in the sense that, at two equinoxes and at the two half-moons, (a) the sun’s daily sunrise on the horizon is moving fastest and (b) The sun’s illumination of the moon is changing most quickly. In both cases, this allowed the megalithic to accurately start and finish their counting of these time cycles of the year and the month. In both cases, midpoints could most accurately define the day on which an event occurred.

The following post takes this further.

The Integration of the Megalithic Yard

Above is a proposed geometric relation between Thom’s megalithic yard (2.72 feet), the royal cubit (1.72 feet) and the remen (1.2 feet). Alexander Thom’s estimate for it based on decades of work was refined from 2.72 to 2.722 feet at Avebury. If the origins of it are astronomical, then its value emerges from the Metonic period of 19 years which is 235 lunar months, making its value 19/7 feet or more accurately 2.715428571 (19008/7000) feet and this makes it 2.7 feet x 176/175 within ancient metrology. Another astronomical derivation is found at Le Manio as the difference between three lunar and three solar years, when counted in day-inches as 32 + 5/8th inches which is 2.71875 (87/32) feet. The megalithic yard of Thom’s first appraisal, of 2.72, probably arose from its megalithic rod (MR) of 6.8 feet since, the Nodal Period of the moon’s nodes take 6800 days which in feet would be 1000 MR. For a fuller explanation see my the appendix of my Language of the Angels book and my discussions of the Cumbrian stone circle, called Seascale by Thom and the only known example of a Type D flattened circle.

One can see that the Megalithic Yard is a tale of many variations, some of which might not consider how or why the megalithic might have come to adopt such a yard. I have come to trust simple integers and ratios to guide me to a possible megalithic pathway. To demonstrate, the above megalithic yard at Le Manio, of 32.625 inches is 29/32 of the English yard, and 32 lunar months (at Le Manio Quadrilateral) is 29 AMY. Such simple rationics is explored here.

Continue reading “The Integration of the Megalithic Yard”

A Mexican Triple Square at Teotihuacan

image: Ricardo David Sánchez for Wikipedia 

This article is from June 2012 on my past Matrix of Creation site where it was read 548 times at the time of last backup. It led to another article and so I repeat it here.

The late Hugh Harleston Jr revealed the famous Mexican pyramids at Teotihuacan as being the manifestation of a very advanced megalithic culture, the Olmec as a root culture for New World Megalithism of Mexico and South America (that led to the Maya nearly a millennium later, the Aztec and the Inca) . The Teoti city-building culture started around 200 BCE but it is not exactly clear when the great city started to be built or what it represented. However, Carnac’s megalithic geometries, its day-inch counting within monuments and evident use of circumpolar astronomy suggests important new clues in the interpretation of this sacred city’s design.

Continue reading “A Mexican Triple Square at Teotihuacan”

Introduction to my book Sacred Number and the Lords of Time

Modern mathematical science deals in precise measurements accurate to many decimal places. Simple integers rarely appear. the trend has recently been toward reforming our units of measure to get away from specific objects of reference and base them on universal physical properties. in ancient times people tried much the same thing, but, not having an arithmetical system, they used whole numbers of the same length (the inch) to measure astronomical time (the day). then, using geometry, they created their first objective measure, a megalithic yard, which expressed the difference between the solar and lunar year.

Their idea of sticking to whole numbers remains part of our number theory and, as Leopold Kronecker famously said, “God created the natural numbers, all else is the work of man.” The natural numbers or integers carry with them a sense of unity and design as to how they interact with one another. As symbols these number relationships affect the physical world and this suggests they provided a fundamental creative fabric for the universe. the constructions made by megalithic people present such a view. The monuments could only reflect a “heavenly pattern” (“as above, so below”) because the fabric of abstract whole number relationships appears to have been employed in a later weaving of planetary time cycles, which were then seen as the work of some god or gods (the demiurge) who surrounded the earth with numerical time ratios.

Continue reading “Introduction to my book Sacred Number and the Lords of Time”