Geometry 4: Right Triangles within Circles

This series is about how the megalithic, which had no written numbers or arithmetic, could process numbers, counted as “lengths of days”, using geometries and factorization.

My thanks to Dan Palmateer of Nova Scotia
for his graphics and dialogue for this series.

This lesson is a necessary prequel to the next lesson.

It is an initially strange fact that all the possible right triangles will fit within a half circle when the hypotenuse equals the half-circles diameter. The right angle will then exactly touch the circumference. From this we can see visually that the trigonometrical relationships, normally defined relative to the ratios of a right triangle’s sides, conform to the properties of a circle.

A triangle with sides {3 4 5} demonstrates the general fact that, when a right triangle’s hypotenuse is the diameter of a circle, the right angle touches the circumference.
Continue reading “Geometry 4: Right Triangles within Circles”

Sacred Number and the Lords of Time

Back Cover

ANCIENT MYSTERIES

“Heath has done a superb job of collating his own work on the subject of megaliths with the objective views of many other researchers in the field. I therefore do not merely recommend reading this book but can state unequivocally it is a must read.”
–John Neal, British metrologist and researcher and author of Measuring the Megaliths and The Structure of Metrology

“In Sacred Number and the Lords of Time we have an important explanation of how megalithic science was developed. This book is a long-overdue wakeup call to a modern culture that has abandoned this fully developed and astonishingly rich prehistoric model of the physical world. The truth is now out.”
–Robin Heath, coauthor of The Lost Science of Measuring the Earth and author of Sun, Moon and Earth

Continue reading “Sacred Number and the Lords of Time”

Recalibrating the Pyramid of Giza

Once the actual height (480 feet) and actual southern base length (756 feet) are multiplied, the length of the 11th degree of latitude (Ethiopia) emerges, in English feet, as 362880 feet. However, in the numeracy of the 3rd millennium BC, a regular number would be used. In the last post, it was noted that John Neal’s discovery of such rectangular numbers to define degrees of latitude, multiplied the pyramid’s pointed height (481.09 feet) by the southern base length (756 feet) to achieve the length of the Nile Delta degree of latitude and, repeating Neal’s diagram relating the key latitudinal degrees of the ancient Model as figure 1, the Ethiopian degree is 440/441 of the Nile Delta degree. As shown above, the length of the 756 foot southern base is changed, when re-measured in the latitudinal feet for Ethiopia; it becomes the harmonic limit of 720 feet of 1.05 feet – normally called the root Persian foot.

Continue reading “Recalibrating the Pyramid of Giza”

Ethiopia within the Great Pyramid

My last posting mentioned John Neal’s creative step of not averaging the Great Pyramid of Giza’s four sides, as had routinely been done in the past – as if to discover an idealized design with four equal sides. Instead, Neal found each length to have intensionally been different. When multiplied by the pyramid’s full height, the length of four different degrees of latitude were each encoded as an area. The length of the southern side is integer as 756 feet, and this referred to the longest latitude, that of the Nile Delta, below 31.5 degrees North. Here we find that the pyramid’s reduced height also indicated the latitude of Ethiopia.

Continue reading “Ethiopia within the Great Pyramid”

Cretan Calendar Disks

I have interpreted two objects from Phaistos (Faistos), both in the Heraklion Museum. Both would work well as calendar objects.

One would allow the prediction of eclipses:

The other for tracking eclipse seasons using the 16/15 relationship of the synod of Saturn (Chronos) and the Lunar Year:

paper: Lunar Simulation at Le Manio

Our survey at Le Manio revealed a coherent arc of radial stones, at least five of which were equally long, equally separated and set to a radius of curvature that suggested a common centre. It appears the astronomers at Le Manio understood that, following three lunar sidereal orbits (after 82 days) the moon would appear again at the same point on the ecliptic at the same time of day