Multiple Squares to form Flattened Circle Megaliths

above: a 28 square grid with double, triple (top), and four-square rectangles (red),
plus (gray again) the triple rectangles within class B


1.     Problems with Thom’s Stone Circle Geometries.

2.     Egyptian Grids of Multiple Squares.

3.     Generating Flattened Circles using a Grid of Squares.


This paper reviews the geometries proposed by Alexander Thom for a shape called a flattened circle, survivors of these being quite commonly found in the British Isles. Thom’s proposals appear to have been rejected through (a) disbelief that the Neolithic builders of megalithic monuments could have generated such sophistication using only ropes and stakes and (b) through assertions that real structures do not obey the geometry he overlaid upon his surveys.

1. Problems with Thom’s Stone Circle Geometries

Almost all of the different types of megalithic building[1] were evolved in the fifth millennium (5,000-4,000 BC), in the area around Carnac on southern Brittany’s Atlantic coast. This includes the many circles built later in the British Isles. When Alexander Thom surveyed these [2] he found them to be remarkably technical constructions, involving sophisticated geometrical ideas. It was only in the mid-seventies, when Thom came to Carnac, that the same geometries were found applied within Carnac’s stone circles which soon afterwards were found to precede those of Britain by at least a thousand years.

After an initial public and academic enthusiasm for Thom’s work[3] British archaeologists chose, with very few exceptions, to refute the entire notion that the Neolithic could have been constructing such technical geometries. As far as our History would have it, such geometries could only have been drawn after the development[4] of a functional mathematics which culminated in Euclid’s classical work on analytic geometry, Elements. Thom’s use of geometry was therefore anachronistic and Thom surely mistaken. For archaeologists to accept Thom’s geometries would have required a revolution in thinking about the megalithic; for which there was little appetite. It was easier to work instead to falsify Thom’s hypothesis with a new type work that argued against Thom’s arguments for geometry, a megalithic yard and astronomical alignments, concluding instead, for example, that “stone circles were distorted so that the audience could see all the rites; and the principals could occupy visually focal positions facing the spectators.”, clearly indicating the still current “comfort zone” within archaeology, in which unquestioned ideas about superstitious rites are used to supersede Thom’s accurate and well founded proposals, of a megalithic technical capability. The problem with inventing ancient rites as the primary purpose for stone circle building is that, whilst refuting Thom’s proposal, it cannot itself ever be proved in a scientific sense; Talk of rites as being the reason for stone circle construction is not delivering an evidence-based scientific proof and Thom’s proposals were not disproved by such ideas.

Figure 1 Thom’s site plans of two of Britain’s finest surviving Flattened Circles, above: Castle Rigg (Type A) and below: Long Meg (Type B). Castle Rigg’s axis of symmetry points (within a degree) to Long Meg, on a bearing which follows the diagonal of a two by one (east by north) rectangle, as if (despite some Lake District mountains in between) the two sites were related when built and hence contemporaneous. site plans by Alexander Thom.

Unlike many of his detractors, Thom surveyed stone circles and through this activity was to create the first (and only) extensive corpus of stone circle site plans. Through this he left a vitally important legacy by preserving their layout against further natural and man-made degradation. The geometrical overlays and typology found within Thom’s site plans have been dismissed as unlikely, on spurious technical grounds [*], usually by people with insufficient technical background in the technical issues within his work. Thom’s later work in Carnac has proven critical in providing further alternative explanations as to how the megalithic actually constructed these stone circle geometries without Euclidian geometrical methods, using instead the system of multiple squares found to be in use in the megalithic structures around Carnac[5]; this in the late 1970’s and after Thom’s surveying seasons earlier in that decade[6].

We will later show that such a system of multiple squares would have eliminated the use of a “compass” or arcing of ropes which Thom proposed to explain how different stone geometries were achieved. Instead, a grid of squares can locate the few key points on the perimeter of a flattened circle. A design method based upon a grid of multiple squares would eliminate the main objection to Thom’s proposal of: Euclid-like geometrical process was used to build stone circle geometries.

Figure 2 the geometries of Flattened Circles (left to right) called Types A, B and D

In the case of the Type A (flattened) stone circles proposed by Thom, I demonstrate below that accepting Thom’s interpretation of its shape is a necessary stepping stone to understanding how this could be achieved by a pre-arithmetic megalithic of the fifth millennium BC.

2. Egyptian Grids of Multiple Squares

The monuments of Carnac demonstrate the use of multiple squares and, because of their antiquity –one to two thousand years before the Pyramid Age – it appears likely that the later use of multiple squares in Dynastic Egypt demonstrates how such a technique could function as a pre-arithmetical geometrical framework. By the Middle Kingdom, the Egyptians had put stylus to papyrus to describe their mathematics in a document called the Rhind Manuscript. This recorded a system of geometry based around pre-Ptolemaic ideas, which included the use of a grid of multiple squares.

At Carnac, the angular extremes of sunrise and sunset, on the horizon during the year, followed the lesser angle of a 3-4-5 triangle whilst in the Rhind Manuscript one finds a “canevas” [*] or grid-based diagram, in which both of the acute angles of this 3-4-5 triangle, held primary to the Egyptians, are shown to be generated by the summed diagonal angles of either; two double squares or two triple squares. The resulting grid is then 14 squares by 14 squares, and this is exactly the grid upon which the Type A stone circles can most easily be constructed, if one excludes the use of ropes and stakes to achieve this design.

Figure 3 of a Rhind diagram showing evolution of a 3-4-5 triangle within a 14 by 14 grid of squares

Such a use of multiple squares, as a template on which to construct a stone circle geometry, raises the question of the side length used, since they all need to be identical and so the ability to create identical lengths would certainly suggest an accurate system of measures, or metrology, was in use. This leads into another bitter dispute, concerning the existence of Alexander Thom’s found measure, the megalithic yard, as being a primary unit of measure maintained accurately by the megalithic builders throughout the British Isles and Brittany. Thom did not know enough about historical metrology to see that the megalithic yard might well have been accompanied by systematic variations applied to its length or indeed, that other measures might also have been evolved. His proposal of an accurate megalithic yard, like that of exact stone circle geometries, also came to be rejected by archaeologists, who themselves knew very little about historical metrology[7] [*], pointed to cases where Alexander Thom’s hypothesis of a singular measure in use within megalithic Britain was muddied by the presence also of other standard units of measure.

3. Generating Flattened Circles using a Grid of Squares

One of the key objections for the megalithic concerning ropes to construct flattened circles is the necessity for measured radii and their centres. If Thom’s Type A or Type B flattened circles were instead constructed using a grid of squares, then some of the key points where a flattened circle’s radius of curvature changes (of which there are only four) must be points of intersection within the grid . This became clear through considering the Type A geometry and specifically its implicit double triangles, as possible right triangles.

Robin Heath has already noted[8] that these triangles are close to the invariant ratio, in their longest sides, of the (lengths of) time found between the eclipse year and the solar year, and this ratio is also to be found between the solar year and the thirteen lunar month year.

The baseline of such a right triangle is found to be 6/7 of the diameter MN of the Type A flattened circle and this implies, given the left-right symmetry of this form, that this key point at the end of the hypotenuse (where the radius of curvature changes) would sit on the corner of a grid point within a 14 by 14 square grid as a length equal to twelve grid units. The forming circle used by Thom, of diameter MN, would then inscribe the grid square.

Figure 4 Type A drawn on a 14 square grid

We also know, from Carnac, that the astronomers used a triple square to frame this right triangle which then relates the periods of eclipse and solar year. Since the vertical position of the key point is 12 units, then to left and right the key points either end of the central flattened arc are 4 units, either side of the central axis. To right and left of these triple squares can be found two four squares, that express with perfect accuracy the relationship of the lunar year to the solar year, as diagonal. These four squares have a baseline of twelve grid squares which exactly matches the number of lunar months within the lunar year.

One can then see within the 14 square grid that many multiple squares can be found, for example the triple squares either side of the vertical centreline have two four-square rectangles to the right and left (shown in red below, the ripple-squares being blue). These leave a row of 14 by 2 squares at the top which can be seen as a seven-square, the rectangle whose diagonal to side alignment is found between a double and a triple square.


Clearly there are alternative ways of generating a flattened circle geometry that using stakes and ropes (geometry as we know it). We know that the Egyptians used grids within square grids of constant unit size and that multiple square rectangles were clearly used at Carnac in the megalithic (c. 4000 BC) before dynastic Egypt began, and by the time of the Rhind papyrus (Middle Kingdom) a system for containing irrationality of numbers had developed a school using grids, and what could be done with them. Ever since the Ancient world, this practice of “modularizing” buildings along rectangular or triangular “lines” became a key practical method outside of algebraic maths. It is therefore highly likely that grids gave the megalithic and later builders a canvas upon which to design and achieve accurate geometries not then rectalinear.

Some other resources.

More on the practical models of such early practices see my book Sacred Geometry: Language of the Angels. For more on flattened and multiple squares, please see chapter two of Sacred Number and the Lords of Time.

see also my youTube video of a talk at Megalithomania in 2015.

[1] ] Megalithic building types include standing stones, stone circles, stone rows, dolmen, chambered and other cairns.

[2] between 1934 and 1978

[3] during the late 1960s and early 1970s

[4] over two thousand miles away in the ancient near east

[5] [AAK and Howard Crowhurst]

[6] His survey can be found

[7] Historical metrology is a scattered remnant of the metrological system employed within the British stone circles and also within the Egyptian pyramids. It is this latter application of metrology in the ancient near east which spread metrology, though such an idea has also been opposed by archaeologists working in the near east.

[8] Sun, Moon and Stonehenge by Robin Heath 1998

Double squares: Venus and the Golden Mean

The humble square, with side length equal to one unit, is like the number one. It’s area is one square unit and, when we add another identical square to one side, the double square appears. Above right the Egyptian Djed column is shown within a double square. The Djed is the rotating earth which the gods and demons have a tug of war over. This is also a key story in the Indian tradition, called The Churning of the Oceans, where the churning creates both the food of the gods (soma) and every wonderful thing that emerges upon the Earth. In this, the double square symbolized the northern and southern hemispheres of the Earth. The anthropomorphic form Djed shown above has elbows indicative of the Double square.

Figure 1 The churning of the ocean (Samudra Manthan in Sanskrit)

The Djed appears to be the general principle of rotation of, and apparent motion around, the earth.

The god Isis is (as a planet) Venus and is shown (fig.2) offering up the sun disk: another Djed is below, with her Ankh symbol of Life atop the Djed, now having female arms . This sun most probably points to the practical year as 365 days which is 5/8 of the Venus synod of 584 days. (This ratio of 1.6 is the sixth note of the octave 1 to 2.)

In figure 2, two female attendants provide the duality which one might take to be her two famous manifestations of (firstly) the brightest Evening Star, as the sun goes down, and then (after that) the brightest Morning Star before the sun rises. Above there is duality again with three baboons either side of the sun, perhaps representing the six visible planets: Moon, Venus and Mercury: Jupiter, Saturn, Mars and their “tug of war”.

Figure 2 The creation of Horus-Ra from out of an ankh with female arms atop a djed. from Budge 1899, also fig. 7.8 of Richard Heath, The Harmonic Origins of the World.

The numbers 5 and 8 are Fibonacci approximations {1 2 3 5 8 13 21 34 …} to the golden mean, a transcendent number {1.618034…} which rational numbers can only approximate. Venus and the Earth have clearly settled into orbits around the sun resonant with Fibonacci ratios since the Venus orbital period (224.701 days) is 8/13 of the solar year. And it is this fact that eventuates in what we see on Earth, namely the manifestations of Venus every 8/5 of a practical year. of 365 days.

Figure 3 The double square, its in-circle and out-circle manifesting golden rectangles around itself.

In this post, I developed a result sent to me, that a square drawn within the upper hemisphere of a circle must define a golden mean rectangle either side from its height of 1 and the remaining radius of 0.618034… and so it can be seen that the divine principle of the Golden Mean emanates from the double square, either side of each square, when the double square is embraced by a circle drawn from its center. Obviously, on Earth and between orbits (of Venus and Earth), the Golden Mean (also called Phi) has to be approximated by whole number ratios but the principle is present within the geometry and its out-circle. Schwaller de Lubicz thought the dynastic Egyptians held the Golden Mean to be “the fundamental scisson” (literally “scissor cut”) in the range one to two and, its reciprocal can be seen to share the portion over 1 (figure 3).

One can see that geometry and the early numbers would have been seen as two aspects of what we call space and time, in which “things” are separate from each other in Existence but somehow conjoined within Eternity. What we call order is in fact an achievement of harmony made possible by the arranging and fitting of parts to form a coherent whole. It is this insight which gave meaning to their study of geometry and numbers from the prehistoric onwards, into the recorded history of early civilizations. The meaning for Life on Earth became encoded within ancient and prehistoric symbols, whose geometrical and numerical language of expression went to the heart of phenomena.

The Approximation of π on Earth

π is a transcendental ratio existing between a diameter/ radius and circumference of a circle. A circle is an expression of eternity in that the circumference, if travelled upon, repeats eternally. The earths shape would be circular if the planet did not spin. Only the equator is now circular and enlarged, whilst the north and south poles have a shrunken radius and, in pre-history, the shape of the earth’s Meridian between the poles was quantified using approximations of π as was seen in the post before last. In some respects, the Earth is a designed type of planet which has to have a large moon, 3/11 of the earth’s size and a Meridian of such a size that the diverse biosphere can be created within the goldilocks region of the Sun’s radiance.

It would be impossible to quantify the earth as a physical object without the use of approximations to π, a technique seen as emerging in Crucuno between its dolmen and famous {3 4 5} Rectangle where the 32 lunar months in 945 days was used, through manipulation of proximate numbers to rationalize the lunar month to 27 feet (10 Drusian steps) within which days could be counted using one Iberian foot (of 32/35 feet) as described here and in my Sacred Geometry book.

John Michell (1983) saw that different types of foot had longer and shorter versions, different by one 175th part and corresponding to the north-south width of two parallels of latitude: 51-52 degrees, which is the mean earth degree, and 10-11 degrees. The ratio 176/175 is interesting as for its primes.

  1. The harmonic primes {2 3 5} are 16/25 times 11/7.
  2. The 11/7 is half of the pi of 22/7 and the harmonic ratio is the inverse of 25/8.

From this it is clear that these two latitudes are related by the approximation to 1 of a π (22/7) and a reciprocal 1/π (8/25).

But John Neal (2000) saw that some feet also expressed 441/440 which is the ratio between the mean radius of the earth and its polar radius, visually clear in the Great Pyramid. This ratio is also the cancellation of two different πs, namely 63/20 and 7/22 since 7 x 63 = 441 and 20 x 22 = 440. From this emerged an ancient model of the earth that was embodied within the ancient metrology itself. I call this the metrological model rather than the (earlier) geometrical model based upon equal perimeters and the singular π of 22/7.

The metrological model gave a set of regular reference latitudes that accurately defined the geoid of the planet’s meridian by 2,500 BC. One can ask how those developing the model came across the idea of using proximate ratios of π like 176/175 and 441/440, since the system works so well that one may say that the meridian appears to have been designed that way.

The geometric model already defined the mean radius as 3960 miles and so that gives a mean earth meridian of 22 x twelve to the power six. One 180th of this gives a degree length of 364953.6 feet and this is only found at the parallel 51-52 degrees. It is this that defines the megalithic in England, Wales, Scotland and Ireland, an obvious candidate for the metrological survey whose complementary latitude was probably 175/176 of this (362880 feet) in Ethiopia, south of the Great Pyramid. The parallel of the Great Pyramid is 441/440 longer (362704.72) than that of Ethiopia while Athens and Delphi are 440/441 of the mean earth and Stonehenge parallel, that is 364126 feet.

This system was first set by Neal in All Done With Mirrors 2000 as I was writing my first book Matrix of Creation. Are we to think Neal made it up or are we dealing with an exact science that had developed through the megalithic enterprise. And if the Egyptians had an exact science of the earth’s geiod, what are we to make of the fact that the earth appears to follow such a numerically inspired pattern of relationships still true today, in the age of global positioning satellites.

One clue lies in the mind, and how ancient number sciences focus holistically upon the balancing mean. A mean earth that did not spin never existed, since it was only the collision with another planet which created the Moon 3/11 smaller than the Earth. The mean earth radius is these days established as the cube root of the equatorial radius squared times the polar radius. This is less, by 3024/3025, than the geometric model’s mean earth radius of 3960 miles, again maintaining rationality.

It would appear that, in entering the physical and spatial, any planetary design might have been based upon precise rational approximations, about the mean size, of π. To this mystery must be added the musical harmony of the outer planets to the Moon, the Fibonacci harmony of Venus to the Earth itself and the extraordinary numerical relationships of planetary time created by the Sun, Moon and Earth documented by my heavily-diagrammed books and website. From this, more and more can be understood about our prehistory and about its monuments.

Books on Ancient Metrology

  1. Berriman, A. E. Historical Metrology. London: J. M. Dent and Sons, 1953.
  2. Heath, Robin, and John Michell. Lost Science of Measuring the Earth: Discovering the Sacred Geometry of the Ancients. Kempton, Ill.: Adventures Unlimited Press, 2006. Reprint edition of The Measure of Albion.
  3. Michell, John. Ancient Metrology. Bristol, England: Pentacle Press, 1981.
  4. Neal, John. All Done with Mirrors. London: Secret Academy, 2000.
  5. —-. Ancient Metrology. Vol. 1, A Numerical Code—Metrological Continuity in Neolithic, Bronze, and Iron Age Europe. Glastonbury, England: Squeeze, 2016 – read 1.6 Pi and the World.
  6. —-. Ancient Metrology. Vol. 2, The Geographic Correlation—Arabian, Egyptian, and Chinese Metrology. Glastonbury, England: Squeeze, 2017.
  7. Petri, W. M. Flinders. Inductive Metrology. 1877. Reprint, Cambridge: Cambridge University Press, 2013.

Sacred Number and the Lords of Time

Back Cover


“Heath has done a superb job of collating his own work on the subject of megaliths with the objective views of many other researchers in the field. I therefore do not merely recommend reading this book but can state unequivocally it is a must read.”
–John Neal, British metrologist and researcher and author of Measuring the Megaliths and The Structure of Metrology

“In Sacred Number and the Lords of Time we have an important explanation of how megalithic science was developed. This book is a long-overdue wakeup call to a modern culture that has abandoned this fully developed and astonishingly rich prehistoric model of the physical world. The truth is now out.”
–Robin Heath, coauthor of The Lost Science of Measuring the Earth and author of Sun, Moon and Earth

Continue reading “Sacred Number and the Lords of Time”

A Pyramidion for the Great Pyramid

image: By 1200 BC, the end of the Bronze Age, the Egyptian map of the world (above) showed nine bows or latitudes, numbers 4 to 9 including the Nile Delta, Delphi, Southern Britain and Iceland, a map based on an ancient geodetic survey.

This post explores a pyramidion, now lost, which exceeded the apex height of the pyramid, so as to model the different reference latitudes established by geodetic surveys and encoded within their metrology and the Great Pyramid (by 2500 BC). This pyramidion would have sat on the flat top of the pyramid, 480 feet above the base of the pyramid.

In All Done With Mirrors, John Neal described how the full height of the pyramid, reaching to its natural apex, would have been just over 481 feet. Most pyramids probably had a pyramidion since a number have been found elsewhere that repeat aspects of or have a name carved on them, of a specific pyramid. Sitting on their apex, they often repeat the form of the larger pyramid, and are scale models of a specific pyramid. In the case of the Great Pyramid, exactly 441th of its natural apex is missing, and this is likely to be because a pyramidion once stood on the flat top the actual pyramid.

Continue reading “A Pyramidion for the Great Pyramid”

Recalibrating the Pyramid of Giza

Once the actual height (480 feet) and actual southern base length (756 feet) are multiplied, the length of the 11th degree of latitude (Ethiopia) emerges, in English feet, as 362880 feet. However, in the numeracy of the 3rd millennium BC, a regular number would be used. In the last post, it was noted that John Neal’s discovery of such rectangular numbers to define degrees of latitude, multiplied the pyramid’s pointed height (481.09 feet) by the southern base length (756 feet) to achieve the length of the Nile Delta degree of latitude and, repeating Neal’s diagram relating the key latitudinal degrees of the ancient Model as figure 1, the Ethiopian degree is 440/441 of the Nile Delta degree. As shown above, the length of the 756 foot southern base is changed, when re-measured in the latitudinal feet for Ethiopia; it becomes the harmonic limit of 720 feet of 1.05 feet – normally called the root Persian foot.

Continue reading “Recalibrating the Pyramid of Giza”