What stone L9 might teach us

image of stone L9, left of corridor of Gavrinis Cairn,
4Km east of Carnac complex. [image: neolithiqueblog]

This article was first published in 2012.

One test of validity for any interpretation of a megalithic monument, as an astronomically inspired work, is whether the act of interpretation has revealed something true but unknown about astronomical time periods. The Gavrinis stone L9, now digitally scanned, indicates a way of counting the 18 year Saros period using triangular counters  founded on the three solar year relationship of just over 37 lunar months, a major subject (around 4000 BC) of the Le Manio Quadrilateral, 4 Km west of Gavrinis. The Saros period is a whole number, 223, of lunar months because the moon must be in the same phase (full or new) as the earlier eclipse for an eclipse to be possible. 

Continue reading “What stone L9 might teach us”

Astronomy 2: The Chariot with One Wheel


What really happens when Earth turns? The rotation of Earth describes periods that are measured in days. The solar year is 365.242 days long, the lunation period 29.53 days long, and so forth.

Extracted from Matrix of Creation, page 42.

Earth orbits the Sun and, from Earth, the Sun appears to move through the stars. But the stars are lost in the brightness of the daytime skies and this obscures the Sun’s progress from human view. However, through observation of the inexorable seasonal changes in the positions of the constellations, the Sun’s motion can be determined.

The sidereal day is defined by the rotation of Earth relative to the stars. But this is different from what we commonly call a day, the full title of which is a tropical day. Our day includes extra time for Earth to catch up with the Sun before another sunrise. Our clocks are synchronized to this tropical day of twenty-four hours (1,440 minutes).

Continue reading “Astronomy 2: The Chariot with One Wheel”

The Discovery of a Soli-Lunar Calendar Device at Le Manio

by Robin Heath

In 2009 I returned to Plouharnel, again for the Solstice Festival, and undertook my own research both before and after the four day event. Howard Crowhurst had undertaken a great deal of theodolite and tape work at a well known site called Le Manio. This collection of surviving monuments forms an exceptionally rich group of astronomical alignments which together carry enormous ritual significance in that these sites hold information about human conception, the gestation period and ritual use of geometry and metrology. Howard understands the site to the point where his three hour workshop covered much of this material, and the implications of it were clearly understood by non-specialists. Those readers who have the chance to attend the Festival, and who speak either English or French, should regard this experience as a megalithic ‘must’. Howard is an exceptionally good communicator of what are often seen as difficult areas of megalithic research, and he is astonishingly good at passing these ideas on to his audience with a great deal of clarity, enthusiasm and humour.
It was during Howard’s seminar/workshop that he invited me to set up his theodolite within the Le Manio Quadrilateral, a curious site near the 6.5 metre high ‘Giant of Le Manio’. This done, I noticed something I had been searching for for twenty years. Read on…!

Le Site Mégalithique du Manio à Carnac

by Howard Crowhurst

Perched on a hill in the forest north of the Carnac alignments, a megalithic site has escaped the fences that have littered the landscapes of the region for several years. These are the menhir and the quadrilateral of Manio. From the outset, the large menhir impresses with its dimensions. Nearly 5m50 high, it is the highest standing stone in the town.

More discreet, the quadrilateral caps the top. 90 upright and contiguous stones, varying in height between 10 cm and 1m60, make up an enclosure approximately 36 meters long and 8 meters wide on average, because the long sides converge. The stones at the ends draw a curve. Four stones to the northeast form the remains of a circle. Two menhirs, much larger than all the other stones in the quadrilateral, open a kind of door in the south file. This particular form questions us. What could she be used for? Was it a meeting place, maybe an enclosure for sheep? In fact, what we see today is probably only the outer skeleton of a larger monument, a mound of stone and earth that contained a chamber inside. Other remains complicate the whole, unless they help us solve our puzzle. Hidden in the brambles and brush, we can discover a stone on the ground of rounded shape. These curves are reminiscent of the belly of a pregnant woman. She is nicknamed the “Lady” of the Manio.

Day-inch counting at the Manio Quadrilateral

It is 10 years since my brother and I surveyed this remarkable monument which demonstrates what megalithic astronomy was capable of around 4000 BC, near Carnac. The Quadrilateral is the earliest clear demonstration of day-inch counting of the solar year, and lunar year of 12 lunar months, both over three years. The lunar count was 1063.125 day-inches long and the solar 1095.75 day-inches, leaving a difference of 32.625 day-inches. This length was probably the origin of a number of later megalithic yards, which had different uses.

Continue reading “Day-inch counting at the Manio Quadrilateral”

Geometry 5: Easy application of numerical ratios

above: Le Manio Quadrilateral

This series is about how the megalithic, which had no written numbers or arithmetic, could process numbers, counted as “lengths of days”, using geometries and factorization.

My thanks to Dan Palmateer of Nova Scotia
for his graphics and dialogue for this series.

The last lesson showed how right triangles are at home within circles, having a diameter equal to their longest side whereupon their right angle sits upon the circumference. The two shorter sides sit upon either end of the diameter (Fig. 1a). Another approach (Fig. 1b) is to make the next longest side a radius, so creating a smaller circle in which some of the longest side is outside the circle. This arrangement forces the third side to be tangent to the radius of the new circle because of the right angle between the shorter sides. The scale of the circle is obviously larger in the second case.

Figure 1 (a) Right triangle within a circle, (b) Making a tangent from a radius. diagram of Dan Palmateer.

Figure 1 (a) Right triangle within a circle, (b) Making a tangent from a radius.

Continue reading “Geometry 5: Easy application of numerical ratios”