Le Site Mégalithique du Manio à Carnac

by Howard Crowhurst

Perched on a hill in the forest north of the Carnac alignments, a megalithic site has escaped the fences that have littered the landscapes of the region for several years. These are the menhir and the quadrilateral of Manio. From the outset, the large menhir impresses with its dimensions. Nearly 5m50 high, it is the highest standing stone in the town.

More discreet, the quadrilateral caps the top. 90 upright and contiguous stones, varying in height between 10 cm and 1m60, make up an enclosure approximately 36 meters long and 8 meters wide on average, because the long sides converge. The stones at the ends draw a curve. Four stones to the northeast form the remains of a circle. Two menhirs, much larger than all the other stones in the quadrilateral, open a kind of door in the south file. This particular form questions us. What could she be used for? Was it a meeting place, maybe an enclosure for sheep? In fact, what we see today is probably only the outer skeleton of a larger monument, a mound of stone and earth that contained a chamber inside. Other remains complicate the whole, unless they help us solve our puzzle. Hidden in the brambles and brush, we can discover a stone on the ground of rounded shape. These curves are reminiscent of the belly of a pregnant woman. She is nicknamed the “Lady” of the Manio.

Day-inch counting at the Manio Quadrilateral

It is 10 years since my brother and I surveyed this remarkable monument which demonstrates what megalithic astronomy was capable of around 4000 BC, near Carnac. The Quadrilateral is the earliest clear demonstration of day-inch counting of the solar year, and lunar year of 12 lunar months, both over three years. The lunar count was 1063.125 day-inches long and the solar 1095.75 day-inches, leaving a difference of 32.625 day-inches. This length was probably the origin of a number of later megalithic yards, which had different uses.

Continue reading “Day-inch counting at the Manio Quadrilateral”

Geometry 5: Easy application of numerical ratios

above: Le Manio Quadrilateral

This series is about how the megalithic, which had no written numbers or arithmetic, could process numbers, counted as “lengths of days”, using geometries and factorization.

My thanks to Dan Palmateer of Nova Scotia
for his graphics and dialogue for this series.

The last lesson showed how right triangles are at home within circles, having a diameter equal to their longest side whereupon their right angle sits upon the circumference. The two shorter sides sit upon either end of the diameter (Fig. 1a). Another approach (Fig. 1b) is to make the next longest side a radius, so creating a smaller circle in which some of the longest side is outside the circle. This arrangement forces the third side to be tangent to the radius of the new circle because of the right angle between the shorter sides. The scale of the circle is obviously larger in the second case.

Figure 1 (a) Right triangle within a circle, (b) Making a tangent from a radius. diagram of Dan Palmateer.

Figure 1 (a) Right triangle within a circle, (b) Making a tangent from a radius.

Continue reading “Geometry 5: Easy application of numerical ratios”

Sacred Number and the Lords of Time

Back Cover

ANCIENT MYSTERIES

“Heath has done a superb job of collating his own work on the subject of megaliths with the objective views of many other researchers in the field. I therefore do not merely recommend reading this book but can state unequivocally it is a must read.”
–John Neal, British metrologist and researcher and author of Measuring the Megaliths and The Structure of Metrology

“In Sacred Number and the Lords of Time we have an important explanation of how megalithic science was developed. This book is a long-overdue wakeup call to a modern culture that has abandoned this fully developed and astonishingly rich prehistoric model of the physical world. The truth is now out.”
–Robin Heath, coauthor of The Lost Science of Measuring the Earth and author of Sun, Moon and Earth

Continue reading “Sacred Number and the Lords of Time”

A Pyramidion for the Great Pyramid

image: By 1200 BC, the end of the Bronze Age, the Egyptian map of the world (above) showed nine bows or latitudes, numbers 4 to 9 including the Nile Delta, Delphi, Southern Britain and Iceland, a map based on an ancient geodetic survey.

This post explores a pyramidion, now lost, which exceeded the apex height of the pyramid, so as to model the different reference latitudes established by geodetic surveys and encoded within their metrology and the Great Pyramid (by 2500 BC). This pyramidion would have sat on the flat top of the pyramid, 480 feet above the base of the pyramid.

In All Done With Mirrors, John Neal described how the full height of the pyramid, reaching to its natural apex, would have been just over 481 feet. Most pyramids probably had a pyramidion since a number have been found elsewhere that repeat aspects of or have a name carved on them, of a specific pyramid. Sitting on their apex, they often repeat the form of the larger pyramid, and are scale models of a specific pyramid. In the case of the Great Pyramid, exactly 441th of its natural apex is missing, and this is likely to be because a pyramidion once stood on the flat top the actual pyramid.

Continue reading “A Pyramidion for the Great Pyramid”

Recalibrating the Pyramid of Giza

Once the actual height (480 feet) and actual southern base length (756 feet) are multiplied, the length of the 11th degree of latitude (Ethiopia) emerges, in English feet, as 362880 feet. However, in the numeracy of the 3rd millennium BC, a regular number would be used. In the last post, it was noted that John Neal’s discovery of such rectangular numbers to define degrees of latitude, multiplied the pyramid’s pointed height (481.09 feet) by the southern base length (756 feet) to achieve the length of the Nile Delta degree of latitude and, repeating Neal’s diagram relating the key latitudinal degrees of the ancient Model as figure 1, the Ethiopian degree is 440/441 of the Nile Delta degree. As shown above, the length of the 756 foot southern base is changed, when re-measured in the latitudinal feet for Ethiopia; it becomes the harmonic limit of 720 feet of 1.05 feet – normally called the root Persian foot.

Continue reading “Recalibrating the Pyramid of Giza”