The Fourfold Nature of Eclipses

The previous post ended with a sacred geometrical diagram expressing the eclipse year as circumference and four anomalous months as its diameter. The circle itself showed an out-square of side length 4, a number which then divides the square into sixteen. If the diameter of the circle is 4 units then the circumference must be 4 times π (pi) implying that the eclipse year has fallen into a relationship with the anomalous month, defined by the moon’s distance but visually by manifest in the size of the moon’s disc – from the point of view of the naked eye astronomy of the megalithic.

In this article I want to share an interesting and likely way in which this relationship could have been reconciled using the primary geometry of π, that is the equal perimeter model of a square and a circle, in which an inner circle of 11 units has an out-square whose perimeter is, when pi is 22/7, 44.

Continue reading “The Fourfold Nature of Eclipses”

Geometry 3: Making a circle from a counted length

The number of days in four years is a whole number of 1461 days if one approximates the solar year to 365¼ days. This number is found across the Le Manio Quadrilateral (point N to J) using a small counting unit, the “day-inch”, exactly the same length as the present day inch. It is an important reuse of a four-year count to be able to draw a circle of 1461 days so that this period of four years can become a ouroboros snake that eats its own tale because then, counting can be continuous beyond 1461 days. This number also permits the solar year to be counted in quarter days; modelling the sun’s motion within the Zodiac by shifting a sun marker four inches every day.

Figure 1 How a square of side length 11 will equal the perimeter of a circle of diameter 14
Continue reading “Geometry 3: Making a circle from a counted length”

Geometry 1: π

understanding the megalithic: circular structures: part 1
What is the relationship of a circles perimeter to its width, called its “diameter”?

It would require 3 and a bit diameters to wrap around the circle – the ratio of 3 and a bit diameters to the perimeter is known as “Pi”, notated by the Greek symbol “π”. Half of the diameter, from the circle’s center to its edge, is named its radius.

Continue reading “Geometry 1: π”

Units within the Great Pyramid of Giza

There is a great way to express pi of 22/7 using two concentric circles of diameter 11 and 14 (in any units). Normally, a diameter of 7 gives rise to a circumference of 22, when pi is being approximated as 22/7 (3.142587) rather than being the irrational number 3.141592654 … for then, the 14 diameter should have a circumference of 44, which is also the perimeter of the square which encloses a circle of diameter 11.

The square of side 11 and
the circle of diameter 14
will both have the same perimeter.

Figure 1 The Equal Perimeter model of two circles, the smaller of which has an out-square of equal perimeter to the greater circle
Continue reading “Units within the Great Pyramid of Giza”