Volume as cubes reveal the wholeness of number as deriving from the unit cube as corner stone defining side length and “volume” of the whole.
The first cube (above left) is a single cube of side length one. One is its own cornerstone. The first cubic number is two to the power of three, with side length two and volume equal to eight cubes that define the unit corner stone.
In modern thinking, and functional arithmetic, volume increases with side length but the cube itself, as archetype of space, is merely divided by the side length of the unit cornerstone, which is 1/8th the volume and therefore reciprocal to the volume of 8 leaving the cube singular.
This may not seem important but, by dividing a whole cube, one is releasing more and more of the very real behavior that exists between numbers, within the cube. For example the number 8 gives relations between numbers 1 to 8, such as the powers of two {1,2,4,8} and the harmonic ratios {2/1, 3/2, 4/3,5/4,6/5}. These can give an important spine of {4/3, 5/4,6/5} which equals 6/3 = 2 of the yet to (numerically) be octave of eight note classes. Moving to side length 3, the cube of three is twenty seven (27), as seen in figure above, top right. To obtain it, the corner stone must be side length 1/3, and volume 1/27 so that, in these units, the volume of the cube is 27.
If one were to reciprocally double the 1/3 side length, each cornerstone unit would have 8 subunits, so that the volume of 27 would be times 8 which equals Plato’s number of 216. Another view is then that the cornerstone side length has divided the bottom right cube into six units which number, 6, cubed, is 216 a perfect number for Plato.
By accepting the cube of one as the whole, this form of thinking reciprocally divides that whole side length to generate an inner structure within the whole cube of one, equal to the denominator of the reciprocation. The role of the whole is then to be the arithmetic mean between a number and its reciprocal. This procedure maintains balance between what is smaller than the whole (the reciprocal) and what is larger than the whole (in this case the volume).
In ancient tuning theory this was expressed by the two hexchords descending and ascending from the tonic (we might call do), expressed by the two hands. The octave of eight and the cube are both wholes to be broken into by numbers greater than one by means of reciprocation.
Ernest G. McClain revealed the scale of such thinking was massive, whilst also but secretly reciprocal, so that a limiting number could express how different wholes will behave due to their inner diversity of numbers at work within them.
In this example, a musical code for planetary resonance is revealed within the metrology of the Parthenon (above), implied tone set (right) and octave mountain of numbers below 1440 (left bottom). In this case the number 24 has been multiplied by 60 to give a limiting number of 1440. The cornerstone in this case is bottom left of the mountain = 1024, a pure power of 210.
By simply quoting a limiting number, in passing, ancient texts could, in the hands of an initiate, create an enormous world of tonal and impied religious meaning – through a kind of harmonic allusion.
It is only by using the conceptual approach of the ancients, that their intellectual life can be recovered – just by adding the waters of number and some powers of imagination.
Seventeen colossal carved heads are known, each made out of large basalt boulders. The heads shown here, from the city of San Lorenzo [1200-900 BCE], are a distinctive feature of the Olmec civilization of ancient Mesoamerica. In the absence of any evidence, they are thought to be portraits of individual Olmec rulers but here I propose the heads represented musical ratios connected to the ancient Dorian heptachord, natural to tuning by perfect fifths and fourths. In the small Olmec city of Chalcatzingo [900-500BCE] , Olmec knowledge of tuning theory is made clear in Monument 1, of La Reina the Queen (though called El Rey, the King, despite female attire), whose symbolism portrays musical harmony and its relationship to the geocentric planetary world *(see picture at end).
* These mysteries were visible using the ancient tuning theories of Ernest G. McClain, who believed the Maya had received many things from the ancient near east. Chapter Eight of Harmonic Origins of the World was devoted to harmonic culture of the Olmec, the parent culture of later Toltec, Maya, and Aztec civilizations of Mexico.
Monument 5 at Chatcatzinga has the negative shape of two rectangles at right angles to each other, with radiating carved strips framing the shape like waves emanating from the space through which the sky is seen. The rectangles are approximately 3 by 5 square or of a 5 by 5 square with its corner squares removed.
Monument 5 at Chalcatzingo is a framed hollow shape. The multiple squares have been added to show that, if the inner points are a square then the four cardinal cutouts are described by triple squares.
The important to see that the Olmec colossal heads were all formed as a carved down oval shape, that would fit the height to width ratio of a rectangular block. For example, three heads from San Lorenzo appear to have a ratio 4 in height to 3 in width, which in music is the ascending fourth (note) of our modern diatonic (major or Ionian) scale.
Even narrower is the fourth head at San Lorenzo, whose height is three to a width of two. This is the ratio of the perfect fifth, so called as the fifth note of the major scale.
And finally (for this short study), the ratio 6/5 can be seen in Head 9 of San Lorenzo and also at La Venta’s Monument 1 (below).
MUSICAL RATIOS
If the heads were conceived in this way, the different ratios apply when seen face on. The corners of the heads were probably rounded out from a supplied slab with the correct ratio between height and width. The corners would then round-out to form helmets and chins and the face added.
And as a group, the six heads sit within in a hierarchy of whole number ratios, each between two small numbers, different by one. At San Lorenzo, Head 4 looks higher status than Head 9 and this is because of its ratio 3/2 (a musical fifth or cubit), relative to the 6/5 of Head 9. We now call the fifth note dominant while the fourths (Heads 1, 5 and 8) are called subdominant. These two are the foundation stones of Plato’s World Soul {6 8 9 12}, within a low number octave {6 12} then having three main intervals {4/3 9/8 4/3}* where 4/3 times 9/8 equals 3/2, the dominant fifth.
*Harmonic numbers, more or less responsible for musical harmony, divide only by the first three primes {2 3 5} so that the numbers between six and twelve can only support four harmonic numbers {8 9 10}
San Lorenzo existed between 1200 to 900 BCE, and in the ancient Near East there are no clear statements for primacy of the octave {2/1}, nor was it apparent in practical musical instruments before the 1st Millennium BCE, according to Richard Dumbrill: Music was largely five noted (pentatonic) and sometimes nine-noted (enneadic) with two players. However, the eight notes of the octave could instead be arrived at, in practice, by the ear, using only fifths and fourths to fill out the six inner tones of a single octave; starting from the highest and lowest tones (identical sounding notes differing by 2/1). A single musical scale results from a harp tuned in this way: the ancient heptachord: it had two somewhat dissonant semitone (called “leftovers” in Greek), intervals seen between E-F and B-C on our keyboards (with no black note between). Our D would then be “do“, and the symmetrical scale we today call Dorian.
The order of the Dorian scale is tone, semitone, tone, tone, tone, semitone, tone {T S T T T S T} and the early intervals of the Dorian {9/8 S 6/5 4/3 3/2} are the ratios also found in these Olmec Heads*. The ancient heptachord** could therefore have inspired the Olmec Heads to follow the natural order tuned by fourths and fifths.
*I did not consciously select these images of Heads but rather, around 2017, they were easily found on the web. Only this week did I root out my work on the heads and put them in order of relative width.
**here updated to the use of all three early prime numbers {2 3 5} and hence part of Just Intonation in which the two semitones are stretched at the expense of two tones of 9/8 to become 10/9, a change of 81/80. (The Babylonians used all three of these tones in their harmonic numbers.)
To understand these intervals as numbers required the difference between two string lengths be divided into the lengths of the two strings, this giving the ratio of the Head in question. The intervals of the heptachord would become known and the same ratios achieved within the Heads, carved out as blocks cut out into the very simple rectangular ratios, made of multiple squares.
The rectangular ratio of Head 4, expressed within multiple squares as 3 by 2.
The early numbers have this power, to define these early musical ratios {2/1 3/2 4/3 5/4 6/5}, which are the large musical tones {octave fifth fourth major-third minor-third}. These ratios are also very simple rectangular geometries which, combined with cosmological ideas based around planetary resonance, would have quite simply allowed Heads to be carved as the intervals they represented. The intervals would then have both a planetary and musical significance in the Olmec religion and state structure.
Frontispiece to Part Three of Harmonic Origins of the World: War in Heaven The seven caves of Chicomoztoc, from which arose the Aztec, Olmec and other Nahuatl-speaking peoples of Mexico. The seven tribes or rivers of the old world are here seven wombs, resembling the octaves of different modal scales, and perhaps including two who make war and sacrifice to overturn/redeem/re-create the world.
A Musical Cosmogenesis
Everything in music comes out of the number one, the vibrating string, which is then modified in length to create an interval. Two strings at right angles, held within a framework such as Monument 5 (if other things like tension, material, etc.were the same) would generate intervals between “pure” tones. However Monument 5 is not probably symbolic but rather, it was probably laid flat like a grand piano (see top illustration). Wooden posts could hold fixings, to make a framework for one (or more) musical strings of different length, at right angles to a reference string. This would be a duo-chord or potentially a cross-strung harp. Within the four inner points of Monument 5 is a square notionally side length. In the image of Monument 1, and variations in height and width from the number ONE were visualized in stone as emanating waves of sound.
The highest numbers lead to the smallest ratio of 6/5 then the 6/5 ratio of Head 9 can be placed with five squares between the inner points and the 3/2 ratio of Head 2 then fills the vertical space left open within Chalcatzingo’s Monument 5.
Monument 5’s horizontal gap can embrace the denominator of a Head’s ratio (as notionally equal to ONE) so that the inner points define a square side ONE, and the full vertical dimension then embraces the 3/2 ratio of the tallest, that of Head 2.
It may well be that this monument was carved for use in tuning experiments and was then erected at Chalcatzingo to celebrate later centuries of progress in tuning theory since the San Lorenzo Heads were made. By the time of Chalcatzingo, musical theory appears to have advanced, to generate the seven different scales of Just intonation (hence the seven caves of origin above), whose smallest limiting number must then be 2880 (or 4 x 720), the number presented (as if in a thought bubble) upon the head of a royal female harmonist (La Reina), see below. She is shown seeing the tones created by that number, now supporting two symmetrical tritones. The lunar eclipse year was also shown above her head (that is, in her mind) as the newly appeared number 1875, at that limit. This latter story probably dates around 600 BCE. This, and much more besides, can be found in my Harmonic Origins of the World, Chapter Eight: Quetzcoatl’s Brave New World.
Figure 5.8 Picture of an ancient female harmonist realizing the matrix for 144 x 20 = 2880. If we tilt our tone circle so that the harmonist is D and her cave is the octave, then the octave is an arc from bottom to top, of the limit. Above and below form two tetrachords to A and D, separated by a middle tritone pain, a-flat and g-sharp. Art by by Michael D Coe, 1965: permission given.
This is a re-posting of an article thought lost, deriving in part from Malcolm Stewart’s Starcut Diagram. The long awaited 2nd edition Sacred Geometry of the Starcut Diagram has now been published by Inner Traditions. Before this, Ernest McClain had been working on tuning via Gothic master Honnecourt’s Diagram of a Man (fig. 2), which is effectively a double square version of the starcut diagram.
The square is the simplest of two dimensional structures to draw, giving access to many fundamental values; for example the unit square has the diagonal length equal to the square root of two which, compared to the unit side length, forms the perfect tritone of 1.414 in our decimal fractional notation (figure 1 left). If the diagonal is brought down to overlay a side then one has the beginning of an ancient series of root derivations usually viewed within the context of a double square, a context often found in Egyptian sacred art where “the stretching of the rope” was used to layout temples and square grids were used to express complex relationships, a technique Schwaller de Lubitz termed Canevas (1998). Harmonically the double square expresses octave doubling (figure 1 right).
Figure 1 left: The doubling of the square side equal 360 units and right: The double square as naturally expressing the ordinal square roots of early integers.
Musical strings have whole number lengths, in ratio to one another, to form intervals between strings and this gives geometry a closer affinity to tuning theory than the use of arithmetic to calculate the ratios within a given octave range. The musicology inferred for the ancient world by Ernest G. McClain in his Myth of Invariance (1976) was calculational rather than geometrical, but in later work McClain (Bibal 2012-13) was very interested in whatever could work (such as folding paper) but was especially interested in the rare surviving notebook of 13th century artist Villard de Honnecourt, whose sketches employed rectilinear frameworks within which cathedrals, their detailing, human and other figures could be drawn.
“I believe we have overlooked Honnecourt as a prime example of what Neugebauer meant in claiming Mesopotamian geometry to approach Renaissance levels illustrated in Descartes. If Honnecourt is 13th c. then he seems more likely to be preserving the ancient picture, not anticipating the new one.”
This draws one into significant earlier traditions of sacred art in Egypt (Canevas) and in Indian temple and statue design, and to Renaissance paintings (see end quote) in which composition was based upon geometrical ideas such as symmetry, divisions into squares and alignments to diagonals. Figure 2 shows one of Honnecourt’s highly stylised sketches of a man, using a technique still in use by a 20th century heraldic artist.
Ernest McClain, Bibal Group: 18/03/2012
Figure 2 The Honnecourt Man employing a geometrical canon.
The six units, to the shoulders of the man, can be divided to form a double square, the lower square for the legs and the upper one for the torso. The upper square is then a region of octave doubling. McClain had apparently seen a rare and more explicit version of this arrangement and, from memory, attempted a reconstruction from first principles (figure 3), which he shared with his Bibal colleagues, including myself.
Figure 3 McClain’s final picture of the Honnecourt Man, its implied Monochord of intervals and their reciprocals.
To achieve a tuning framework, the central crossing point had been moved downwards by half a unit, in a double square of side length three. On the right this is ½ of a string length when the rectangle is taken to define the body of a monochord. McClain was a master of the monochord since his days studying Pythagorean tuning. Perhaps his greatest insight was the fact that the diagonal lines, in crossing, were inadvertently performing calculations and providing the ratios between string lengths forming musical intervals.
Since the active region for octave studies is the region of doubling, the top square is of primary interest. At the time I was also interested in multiple squares and the Egyptian Canevas (de Lubitz. 1998. Chapter 8) since these have special properties and were evidently known as early as the fifth millennium BC (see Heath 2014, chapter two) by the megalith builders of Carnac. In my own redrawing of McClain’s diagram (figure 4) multiple squares are to be seen within the top square. This revealed that projective geometry was to be found as these radiant lines, of the sort seen in the perspective of three dimensions when drawn in two dimensions.
Figure 4 Redrawing McClain to show multiple squares, and how a numerical octave limit of 360 is seen creating lengths similar to those found in his harmonic mountains.
Returning to this matter, a recently developed technique of populating a single square provides a mechanism for studying what happens within such a square when “starcut”.
Figure 5 left:Malcolm Stewart’s 2nd edition book cover introducing right:the Starcut Diagram,applicable to the top square of Honnecourt’s octave model .
Malcolm Stewart’s diagram is a powerful way of using a single square to achieve many geometrical results and, in our case, it is a minimalist version that could have more lines emanating from the corners and more intermediate points dividing the squares sides, to which the radiant lines can then travel. Adding more divisions along the sides of the starcut is like multiplying the limiting number of a musical matrix, for example twice as many raises by an octave.
A computer program was developed within the Processing framework to increase the divisions of the sides and draw the resulting radiants. A limit of 720 was used since this defines Just intonation of scales and 720 has been identified in many ancient texts as having been a significant limiting number in antiquity. Since McClain was finding elements of octave tuning within a two-square geometry, my aim was to see if the crossing points between radiants of a single square (starcut) defined tones in the just scales possible to 360:720. This appears to be the case (figure 6) though most of the required tone numbers appear along the central vertical division and it is only at the locations nearest to D that eb to f and C to c# that only appear “off axis”. The pattern of the tones then forms an interesting invariant pattern.
Figure 6 Computer generated radiants for a starcut diagram with sides divided into six.
Figure 7 http://HarmonicExplorer.org showing the tone circle and harmonic mountain (matrix) for limit 720, the “calendar constant” of 360 days and nights.
Each of the radiant crossing points represents the diagonal of an M by N rectangle and so the rational “calculation” of a given tone, through the crossing of radiants, is a result of the differences from D (equal to either 360 or 720) to the tone number concerned (figure 8).
Figure 8 How the tone numbers are calculated via geometrical coincidence of cartesian radiants which are rational in their shorter side length at the value of a Just tone number
It is therefore no miracle that the tone numbers for Just intonation can be found at some crossing points and, once these are located on this diagram, those locations could have been remembered as a system for working out Just tone numbers.
Bibliography
Heath, Richard.
2014. Sacred Number and the Lords of Time. Rochester, VT: Inner Traditions.
2018. Harmonic Origins of the World: Sacred Number at the Source of Creation. Inner Traditions.
2021. Sacred Geometry: Language of the Angels. Inner Traditions.
Lubitz, R.A. Schwaller de.
1998. The Temple of Man: Apet of the South at Luxor. Vermont: Inner Traditions.
McClain, Ernest G.
1976. The Myth of Invariance: The Origin of the Gods, Mathematics and Music from the Rg Veda to Plato. York Beach, ME: Nicolas Hays.
Stewart, Malcolm.
2022. Sacred Geometry of the Starcut Diagram: The Genesis of Number, Proportion, and Cosmology. Inner Traditions.
Does the solar system function as a musical instrument giving rise to intelligent life, civilization and culture on our planet? This 2018 article in New Dawn introduced readers to the lost science of the megalithic – how our ancestors discovered the special ratios and musical harmony in the sky which gave birth to religion and cosmology. The musical harmonies were the subject of my book released that year, called The Harmonic Origins of the World.
After the ice receded, late Stone Age people developed the farming crucial to the development of cities in the Ancient Near East (ANE). On the Atlantic coast of Europe, they also developed a now-unfamiliar science involving horizon astronomy. Megalithic monuments were the tools they used for this, some still seen in the coastal regions of present day Spain, France, Britain and Ireland. Megalithic astronomy was an exact science and this conflicts with our main myth about our science: that ours is the only true science, founded through many historical prerequisites such as arithmetic and writing in the ancient near east (3000- 1200 BC) and theory-based reasoning in Classical Greece (circa 400-250 BC), to name but two. Unbeknownst to us, the first “historical period” in the near east was seeded by the exact sciences of the megalithic, such as the accurate measurement of counted lengths of time, developed by the prehistoric astronomers. With the megalithic methods came knowledge and discoveries, and one discovery was of the harmonic ratios between the planets and the Moon.
This was published as The Geodetic And Musicological Significance Of The Shorter Side Length Of The Parthenon As Hekatompedon Or ‘Hundred-Footer’ in Music and Deep Memory: Speculations in ancient mathematics, tuning, and tradition, in memoriam Ernest G. McClain. Edited by Bryan Carr and Richard Dumbrill. pub: Lulu. photo: Steve Swayne for Wikipedia on Parthenon.
This note responds to Kapraff and McClain’s preceding paper, in which they discover a many-faceted musical symbolism in the Parthenon. Specifically, Ernst Berger’s new measurements include the shorter side of the triple pedestal of the monument as an accurate length to represent one second of the double meridian of the earth. By applying a knowledge of ancient metrology, Anne Bulckens’ doctoral derivations of a root foot can resolve to a pygme of 9/8 feet, of which one second of latitude would contain 90 such feet. However, as a ‘hundred footer’, the foot length should then be 81/80 (1.0125) feet, the ratio of the syntonic comma. This would indicate a replacement, by Classical times, of the geographical constant of 1.01376 feet within the model of the earth since the original model, by the late megalithic, assumed that the meridian was exactly half of the mean circumference of the earth. These alternative geographical constants co-incidentally represent the ubiquitous theme in ancient musicology of the transition between Pythagorean and Just tunings and their respective commas of Pythagorean 1.01364 … (in metrology 1.01376) and syntonic 81/80 (1.0125).
By Classical times the term hekatompedon or ‘hundred-footer’ had evolved, to describe the ideal dimensionality of Greek peristyle temples. One of the earliest, the Heraion of Samos, came to be 100 feet long by the end of the 8th century[1], in contrast to the surface width of the Parthenon’s stylobyte which had been established as in the range 101.141 (Stuart, c.1750) to 101.341 (Penrose in 1888) feet[2].
Recent measurements in 1982 by Ernst Berger[3] found that the top surface of the stylobyte was just over 101.25 feet wide4 and that the most frequently occurring length was 857.6 mm. Anne Bulckens’[5] corresponding foot measure for this would be a step of 2.5 feet, each of 9/8 (1.125) feet, to within one part in 2500; a foot length called a pygme within historical metrology, after the size of small men first mentioned when Herakles was travelling back from India6. The shorter ends of the Parthenon’s stylobyte would then be 90 such feet across.
However, should the two ends be divided by 100, the required foot length of 101.25 feet becomes a microvariation of the English foot, namely 81/80 (1.0125) feet, a ratio identical with the syntonic comma. This is another ratio crucial to the history of ancient tuning theory; being found between pure Pythagorean tones (9/8) and their counterparts within just tuning (10/9); when string lengths are given specific whole number lengths to specify their pitches intellectually.
1. Hurwit, Jeffrey M., (1987), The Art and Culture of Early Greece, 1100-480 B.C., Cornell: Ithaca, 74-77 2. Berriman, A.E., (1953) Historical Metrology, London: Dent. IX, 116-120. 3. Berger, E., ed. (1986) Parthenon-Kongress Basel, 2 Vols, Mainz: Philipp von Zabern. 4. an average noted by Berriman, 119. 5. Bulckens, A.M. (1999) The Parthenon’s Main Design Proportion and its Meaning, [Ph.D. Dissertation], Geelong: Deakin University, 269 pp. ; (2001) The Parthenon’s Symmetry in Symmetry: Art and Science (Fifth Interdisciplinary Symmetry Congress and Exhibition of the ISIS-Symmetry), (Sydney, 2001), no. 1-2, pp. 38-41. 6. Philostrates of Lemnos (c. 190 – c. 230 AD) Imagines Heracles among the Pygmies, see Loeb Classical Library
A recent article by Jay Kapraff and Ernest McClain[7] observes that the width of the Parthenon symbolically defined one second of latitude (taking surface lengths as linear fractions of latitude). This implies the double meridian length was known within 0.003% of its modern estimation.
A geodetic symbolism was apparently given to shorter side length of the Parthenon, making it smaller than it would have been if modelled on the circumference of the earth as one 3,600th of one 360th part of the mean earth. If so, this geodetic meaning of the Parthenon can be compared with monuments built two thousand years earlier, such as Stonehenge and the Great Pyramid of Giza, within which the relationship of the mean earth was specified, relative to the polar radius, using the same metrological system.
The ancient model of the earth, recovered[8] by John Neal[9] and John Michell[10], used three different approximations of π to model the distortion of the rotating planet relative to its mean, or perfectly spherical, size. In that model, the Meridian was assumed to be half the circumference of the mean earth of 44 times 126 (131,383.296) feet or 24,883.2 miles. Had the Parthenon’s builders used this model then its ends would be 101.376 feet in width and one hundredth of this would be a foot of 1.01376 feet, the foot known as the ‘Standard Geographical’ Greek foot[11].
The mean circumference of the earth (24,883.2 miles) and the actual double meridian length (24,859.868 miles) are in the same ratio as the geographical foot of 1.01376 (3168/3125) and 1.0125 feet: the 81/80 foot measure that makes the Parthenon’s 101.25 feet a ‘hundred footer’. It is therefore reasonable to assume that, between the building of Stonehenge and Great Pyramid (by 2,500 B.C.) and the building of the Parthenon (designed by 447 B.C.), a more accurate measurement of the Meridian had superseded the previous assumption, within the old model, that the Meridian was half the length of the mean earth circumference.
7. The Proportional System of the Parthenon, in preparation for the In Memoriam volume for Ernest McClain (1918-2014) 8. Michell by 1980 and Neal, fully formed, by 2000. 9. Neal, John (2000) All Done With Mirrors, Secret Academy, London. 10. Michell, John (1982) Ancient Metrology, Pentacle Books, Bristol, 1982; (2008 new ed.) Dimensions of Paradise, Inner Traditions: Rochester.
Further to this, one can see how the transition from Pythagorean to just tuning systems[12] is strangely present in the relationship between the mean earth circumference and the actual meridian length, since the geographical constant of 1.01376 is near identical to the Pythagorean comma of 1.0136433 while the (chosen) ratio of 1.0125 is the syntonic comma and this, times 100, is near identical to the actual length of one second of latitude which would be 100 times 1.0128 feet[13], just one third of an inch different from a more modern result.
The Parthenon ‘Hundred footer’ was able to dimensionally reference one second of the Meridian by having its shorter sides one hundred feet of 1.0125 feet long. Aligned to north, this presented accurate Classical knowledge of the Meridian’s length. The monument expresses other musicological features via its metrology: the 81/80 foot unit is 125/128 of the Athenian foot of 1.0368 feet, a musical interval called the minor diesis, also found within just intonation and equaling the deficiency of three major thirds to the octave
12 The latter prevalent in other aspects of the monument, see Kappraff, J. and McClain, E.G. (2005: Spring–Fall) The Proportions of the Parthenon: A work of musically inspired architecture, Music in Art: International Journal for Music Iconography, Vol. 30/1–2. 13 A non-harmonic 79/78 feet.
Over the last seven thousand years, hunter-gathering humans have been transformed into the “modern” norms of citizens (city dwellers) through a series of metamorphoses during which the intellect developed ever-larger descriptions of the world. Past civilizations and even some tribal groups have left wonders in their wake, a result of uncanny skills – mental and physical – which, being hard to repeat today, cannot be considered primitive. Buildings such as Stonehenge and the Great Pyramid of Giza are felt anomalous, because of the mathematics implied by their construction. Our notational mathematics only arose much later and so, a different maths must have preceded ours.
We have also inherited texts from ancient times. Spoken language evolved before there was any writing with which to create texts. Writing developed in three main ways: (1) Pictographic writing evolved into hieroglyphs, like those of Egyptian texts, carved on stone or inked onto papyrus, (2) the Sumerians used cross-hatched lines on clay tablets, to make symbols representing the syllables within speech. Cuneiform allowed the many languages of the ancient Near East to be recorded, since all spoken language is made of syllables, (3) the Phoenicians developed the alphabet, which was perfected in Iron Age Greece through identifying more phonemes, including the vowels. The Greek language enabled individual writers to think new thoughts through writing down their ideas; a new habit that competed with information passed down through the oral tradition. Ironically though, writing down oral stories allowed their survival, as the oral tradition became more-or-less extinct. And surviving oral texts give otherwise missing insights into the intellectual life behind prehistoric monuments.