above: Dan Palmateer wrote of this, “it just hit me that the conjunction of the circle to the golden rectangle existed.”
Here we will continue in the mode of a lesson in Geometry where what is grasped intuitively has to have reason for it to be true. It occurred to me that the square in the top hemisphere is the twin of a square in the lower hemisphere, hence this has a relationship to the double square rectangle. So one can (1) Make a Double Square and then (2) Find the center and (3) a radius can then draw the out-circle of a double square (see diagram below).
In previous lessons, fixed lengths have been divided into any number of equal parts, to serve the notion of integer fractions in which the same length can then be reinterpreted as to its units or as a numerically different measurement. This allows all sorts of rescaling and exploitation of the properties of integer numbers.
Here we present a megalithic method which extended two or more fixed bearings (or alignments), usually based upon a simple geometrical form such as a triangle or a rectangle. This can be how the larger geometries came to be drawn on the landscape (here called landforms) of separated megaliths and natural features which appear to belong together. For example,
Outliers: Alexander Thom found that British stone circle were often associated with single outliers (standing stones) on a bearing that may correspond to horizon event but equally, appears to give clues to the metrology of the circle in the itinerary length to the outlier from the circle’s centre.
Figure 1 Stone circle plans often indicate nearby outliers and stone circles
Stone circles were also placed a significant distance and bearing away (figure 1), according to geometry or horizon events. This can be seen between Castle Rigg and Long Meg, two large flattened circles – the first Thom’s Type-A and the second his Type-B.
Figure 2 Two large megalithic circles appear linked in design and relative placement according to the geometry of the double square.
Expanding geometrically
The site plan of Castle Rigg (bottom left, fig. 1) can have the diagonal of a double square (in red) emerging between two stones which then bracket the chosen direction. This bearing could be maintained by expanding the double square so that west-to-east and south to north expand as the double and single length of a triangle while the hypotenuse then grows towards the desired spot according to a criteria such as, a latitude different to that of Castle Rigg. That is, at any expansion the eastings and northings are known as well as the distance between the two circles while the alignments, east and northeast in this example, are kept true by alignment to previous established points. Indeed, one sees that the small outlier circle of Long Meg, to Little Meg beyond, was again on the same diagonal bearing, according to the slope angle of the cardinal double square.*** One can call this a type of projective geometry.
***This extensive double square relation between megalithic sites was first developed by Howard Crowhurst, in Ireland between Newgrange and Douth in same orientation as figure 2, and by Robin Heath at https://robinheath.info/the-english-lake-district-stone-circles/.
It seems impossible for such arrangements to have been achieved without modern equipment and so the preference is to call these landforms co-incidental. But, by embracing their intentionality, one can see a natural order between Castle Rigg and, only then, Long Meg’s outlying Little Meg circle, and through this find otherwise hidden evidence of the working methods in the form of erratics or outliers, whose purpose is otherwise unclear.
Equilateral Expansion
The work of Robin Heath in West Wales can be an interesting challenge since not all the key points on his Preseli Vesica are clearly megalithic, perhaps because megaliths can be displaced by settlements or be subsumed by churches, castles and so on. (see Bluestone Magic, chapter 8). First, for completeness, how is a vesica defined today? In his classic Sacred Geometry, Robert Lawlor explains the usual construction and properties of the vesica :
Draw the major and minor axes CD and AB. Draw CA, AD, DB and BC. By swinging arcs of our given radius from either centre A or B we trace along the vesica to points C and D, thus verifying that lines AB, BC, CA, BD and AD are equal to one another and to the radius common to both circles.
We now have two identical equilateral triangles emerging from within the Vesica Piscis. Extend lines CA and CB to intersect circles A and B at points G and F. Lines CG and CF are diameters of the two circles and thus twice the length of any of the sides of the triangles ABC and ABD. Draw FG passing through point D.
Sacred Geometry by Robert Lawlor
Primitive versus later geometry
Lawlor’s presentation have the triangles appearing as the conjuction of two circles and their centers. However, the points and lines of modern geometry translate, when interpreting the megalithic, into built structures or significant features, and the alignments which may join them. The alignments are environmental and in the sky or landscape.
A is Pentre Ifan, a dolmen dating from around 3500 BC.
B is located in the Carningli Hillfort, a mess of boulders below the peak Carningli (meaning angel mountain). Directly East,
C is the ancient village, church and castle of Nevern.
D is a recently excavated stone circle, third largest in Britain at around 360 feet diameter, but now ruinous, call Waun Mawn.
The two equilateral triangles have an average side length around 11,760 feet but, as drawn, each line is an alignment of azimuth 330, 0, 30, and 90 degrees and their antipodes.
The Constructional Order
Relevant here is how one would lay out such a large landform and we will illustrate how this would be done using the method of expansion.
North can be deduced from the extreme elongation of the circumpolar stars in the north, since no pole star existed in 3200BC. At the same time it is possible to align to plus and minus 30 degrees using Ursa Major. This would give the geometry without the geometry so to speak, since ropes 11760 feet long are unfeasible. It seems likely that the Waun Mawn could function as a circumpolar observatory (as appears the case at Le Menec in Brittany, see my Lords of Time).
If the work was to start at Carningli fort, then the two alignments (a) east and (b) to Waun Mawn could be expanded in tandem until the sides were 11760 feet long, ending at the circle to the south and dolmen to the east. The third side between these sites should then be correct.
The vesica has been formed to run alongside the mountain. The new eastern point is a dolmen that points north to another dolmen Llech-y-Drybedd on the raised horizon, itself a waypoint to Bardsey Island.
The reason for building the vesica appears wrapped up in the fact that its alignments are only three, tightly held within a fan of 60 degrees pointing north and back to the south. But the building of the double equilateral cannot be assumed to be related to the circular means of its construction given by Lawlor above. That is, megalithic geometry did not have the same roots as sacred geometry which has evolved over millennia since.
By 2016 it was already obvious that the lunar month (in days) and the PMY, AMY and yard (in inches) had peculiar relationships involving the ratio 32/29, shown above. This can now be explained as a manifestation of day-inch counting and the unusual numerical properties of the solar and lunar year, when seen using day-inch counting.
It is hard to imagine that the English foot arose from any other process than day-inch counting; to resolve the excess of the solar year over the lunar year, in three years – the near-anniversary of sun and moon. This created the Proto Megalithic Yard (PMY) of 32.625 day-inches as the difference.
A strange property of N:N+1 right triangles can then transform this PMY into the English foot, when counting over a single lunar and solar year using the PMY to count months.
Perched on a hill in the forest north of the Carnac alignments, a megalithic site has escaped the fences that have littered the landscapes of the region for several years. These are the menhir and the quadrilateral of Manio. From the outset, the large menhir impresses with its dimensions. Nearly 5m50 high, it is the highest standing stone in the town.
More discreet, the quadrilateral caps the top. 90 upright and contiguous stones, varying in height between 10 cm and 1m60, make up an enclosure approximately 36 meters long and 8 meters wide on average, because the long sides converge. The stones at the ends draw a curve. Four stones to the northeast form the remains of a circle. Two menhirs, much larger than all the other stones in the quadrilateral, open a kind of door in the south file. This particular form questions us. What could she be used for? Was it a meeting place, maybe an enclosure for sheep? In fact, what we see today is probably only the outer skeleton of a larger monument, a mound of stone and earth that contained a chamber inside. Other remains complicate the whole, unless they help us solve our puzzle. Hidden in the brambles and brush, we can discover a stone on the ground of rounded shape. These curves are reminiscent of the belly of a pregnant woman. She is nicknamed the “Lady” of the Manio.
The ratios of ancient metrology emerged from the Megalithic innovations of count&compare: counting time as length and comparing lengths as the longest sides of right triangles. To compare two lengths in this way, one can take a longer rope length and lay it out (say East-West), starting at the beginning of the shorter rope length, using a stake in the ground to fix those ends together.
The longer rope end is then moved to form an angle to the shorter, on the ground, whilst keeping the longer rope straight. The Right triangle will be formed when the longer rope’s end points exactly to the North of the shorter rope end. But to do that one needs to be able to form a right angle at the shorter rope’s end. The classic proposal (from Robin Heath) is to form the simplest Pythagorean triangle with sides {3 4 5} at the rope’s end. One tool for this could then have been the romantic knotted belt of a Druid, whose 13 equally spaced knots could define 12 equal intervals. Holding the 5th knot, 8th knot and the starting and ending knots together automatically generates that triangle sides{3 4 5}.
The old yard was almost identical to the yard of three feet, but just one hundredth part smaller at 2.87 feet. This gives its foot value as 99/100 feet, a value belonging to a module very close to the English/Greek which defines one relative to the rational ratios of the Historical modules.
So why was this foot and its yard important, in the Scottish megalithic and in later, historical monuments?
If one forms a square with side equal to the old yard, that square can be seen as containing 9 square feet, and each of those has side length 99/100 feet. This can be multiplied by the rough approximation to 1/√ 2 of 5/7 = 0.714285, to obtain a more accurate 1/√ 2 of 99/140 = 0.70714285.