The Geocentric Planetary Matrix

Harmonic Origins of the World inserted the astronomical observations of my previous books into an ancient harmonic matrix, alluded to through the harmonic numbers found in many religious stories, and also through the cryptic works of Plato. Around 355 BC, Plato’s dialogues probably preserved what Pythagoras had learnt from ancient mystery centers of his day, circa. 600 BC.

According to the late Ernest G. McClain*, Plato’s harmonic matrices had been widely practiced by initiates of the Ancient Near East so that, to the general population, they were entertaining and uplifting stories set within eternity while, to the initiated, the stories were a textbook in harmonic tuning. The reason harmonic tuning theory should have infiltrated cosmological or theological ideas was the fact that, the planets surrounding Earth express the most fundamental musical ratios, the tones and semitones found within octave scales.

* American musicologist and writer, in the 1970s,
of The Pythagorean Plato and The Myth of Invariance.

Ancient prose narratives and poetic allusions were often conserving ancient knowledge of this planetary harmony; significant because these ratios connect human existence to the world of Eternity. In this sense the myths of gods, heros and mortals had been a natural reflection of harmonic worlds in heaven, into the life of the people.

In the Greece before the invention of phonetic writing, oral or spoken stories such as those attributed to Homer and Hesiod were performed in public venues giving rise to the amphitheaters and stepped agoras of Greek towns. Special performers or rhapsodes animated epic stories of all sorts and some have survived through their being written down.

At the same time, alongside this journey towards genuine literacy, new types of sacred buildings and spaces emerged, these also carrying the sacred numbers and measures of the megalithic to Classical Greece, Rome, Byzantium and elsewhere, including India and China.

The Heraion of Samos, late 8th century BC. [figure 5.9 of Sacred Geometry: Language of the Angels.]

Work towards a fuller harmonic matrix for the planets

In my first book, called Matrix of Creation, I had not yet assimilated McClain’s books, but had identified the musical intervals between the lunar year and the geocentric periodicities of the outer planets. To understand what was behind the multiple numerical relationships within the geocentric world of time, I started drawing out networks of those periods and, as I looked at all the relationships (or interval ratios) between them, I could see common denominators and multiples linking the celestial time periods through small intermediary and whole numbers: numbers which became sacred for later civilizations. For example, the 9/8 relationship between the Jupiter synod and the lunar year could be more easily grasped in a diagram revealing a larger structural network, visualized as a “matrix diagram” (see figure 1).

Figure 1 Matrix Diagram of Jupiter and the Moon. figure 9.5 of Matrix of Creation, p117.

One can see the common unit of 1.5 lunar months, at the base of the diagram, and a symmetrical period at the apex lasting 108 lunar months or 9 lunar years (referencing the Maya supplemental glyphs). In due course, I re-discovered the use of the Lambda diagram of Plato (figure 8.7), and even stumbled upon the higher register of five tones (figure 2) belonging to the Mexican flying serpent, Quetzalcoatl (as figure 8.1), made up of [Mercury, the eclipse year, the Tzolkin, Mars and Venus], Venus also being called Quetzalcoatl.

Figure 2 My near discovery of Quetzalcoatl, in fig. 8.1 of Matrix of Creation

These periodicities are of adjacent musical fifths (ratio 3/2), which would eventually be shown as connected to the corresponding register of the outer planets, using McClain’s harmonic technology in my 5th book Harmonic Origins of the World (see figure 3).

Probably called the flying serpent by dynastic Egypt, Quetzalcoatl’s set of musical fifths was part of the Mexican mysteries of the Olmec and Maya civilizations (1500 BC to 800 AD). This serpent flies 125/128 above the inner planets – for example, the eclipse season is 125/128 above the lunar year: 354.367 days × 125/128 = 346 days, requiring I integrate the two serpents within McClain’s harmonic matrices in Harmonic Origins of the World (as figure 9.3).

  • Uranus is above Saturn
  • The eclipse year is above the lunar year
  • the Tzolkin of 260 days is above the 9 lunar months of Adam
Figure 3 The two harmonic serpents of “Heaven” and “Earth”

By my 6th book, Sacred Geometry: Language of the Angels, I had realized that the numerical design within which our “living planet” sits is a secondary creation – created after the solar system, yet it was discovered before the heliocentric creation of the solar system, exactly because the megalithic observed the planets from the Earth. Instead of proposing the existence of a progenitor civilization with high knowledge** I instead proposed, as more likely, that the megalithic was the source of the ancient mysteries. Such mysteries then only seem mysterious because; a kind of geocentric science before our own heliocentric one seems anachronistic.

**such as Atlantis as per Plato’s Timaeus: an island destroyed by vulcanism, Atlantis and similar solutions have simply “kicked the can down the road” into an as-yet-poorly-charted prehistory before 5000 BC, for which less evidence exists because there never was any. In contrast, the sky astronomy and earth measures of the megalithic are to be found referenced in later monuments and ancient textual references. That is, megalithic monuments recorded an understanding of the cosmos then found in the ancient mysteries. A geocentric world view was a naturally result of the megalithic, achieved using the numbers they found through geocentric observations, counting lengths of time, using horizon events and the mathematical properties of simple geometries.

Geo-centrism was the current world view until superseded by the Copernican heliocentric view. This new solar system was soon found by 1680 to be held together by natural gravitational forces between large planetary masses, forces discovered by Sir Isaac Newton. The subsequent primacy of heliocentrism, which started 500 years ago, caused humanity to lose contact with the geocentric model of the world: though figure 4 has the planets in the correct order for the the two serpents, of inner and outer planets, this is also (largely) the heliocentric order, if one but swaps the sun and the moon-earth system.

All references to an older and original form of astronomy, based upon numerical time and forged by the megalithic, was thus dislocated and obscured by our heliocentric physical science and astronomy of the modern day – which still knows nothing of the geocentric order that surrounds us.

Figure 4 The Geocentric Model by 1660

The geocentric model entered Greek astronomy and philosophy at an early point; it can be found in pre-Socratic philosophy … In the 4th century BC, two influential Greek philosophers, Plato and his student Aristotle, wrote works based on the geocentric model. According to Plato, the Earth was a sphere, stationary at the center of the universe.

Wikipedia: “Geocentric model”

The Richard Syrett Interviews on Sacred Geometry: Language of the Angels

I recently recorded a podcast with Richard Syrett and will be talking with him again today (January 2nd) on Coast to Coast, starting 10pm Pacific time. In the UK, this is tomorrow (Sunday the 3rd) at 6am GMT. Both these interviews are in response to my new book Sacred Geometry: Language of the Angels, which goes on release Monday 4th of January 2021.

Ways of Purchasing: This large-format book, richly illustrated in color throughout, can be seen in the sidebar (on mobiles, below the tag cloud) or visit Inner Traditions.

Jupiter’s gravitational and numerical influence

This post begins a Theme relating to the Trigon event occurring on 21st December 2020, when Jupiter and Saturn are conjunct at dusk in the sky. This touches upon what such synchronicities mean for other long term periods seen from Earth, such as the Moon’s nodal period of 6800 days and even the Precession of the Equinoxes over 25,800 ± 120 years.

Jupiter is the second largest body in the solar system next to the sun itself. In fact, Jupiter is not far short of being a sun itself and, being the closest giant planet to the Earth, our planet is strongly influenced by Jupiter’s gravity which, unlike the Sun’s continuous pull to maintain Earth’s orbit around it, Jupiter pulls upon the Earth and the Moon on an episodic basis when the Earth is passing between the Sun and Jupiter.

Continue reading “Jupiter’s gravitational and numerical influence”

St Pierre 1: Jupiter and the Moon

The egg-shaped stone circles of the megalithic, in Brittany by c. 4000 BC and in Britain by 2500 BC, seem to express two different astronomical time lengths, beside each other as (a) a circumference and then (b) a longer, egg-shaped extension of that circle. It was Alexander Thom who analysed stone circles in the 20th century as a hobby, surveying most of the surviving stone circles in Britain and finding geometrical patterns within irregular circles. He speculated the egg-shaped and flattened circles were manipulating pi so as to equal three (not 3.1416) between an initial radius and subsequent perimeter, so making them commensurate in integer units. For example, the irregular circle would have perimeter 12 and a radius of 4 (a flattened circle).

However, when the forming circle and perimeter are compared, these can compare the two lengths of a right-triangle while adding a recurring nature: where the end is a new beginning. Each cycle is a new beginning because the whole geocentric sky is rotational and the planetary system orbital. The counting of time periods was more than symbolic since the two astronomical time periods became, by artifice, related to one another as two integer perimeters that is, commensurate to one another, as is seen at St Pierre (fig.3).

Continue reading “St Pierre 1: Jupiter and the Moon”

Fibonacci in Jupiter’s 12-fold Heaven

The Fibonacci series is an ideal pattern, widely found within living systems, in which the present magnitude or location of something is the product of two previous magnitudes or locations of it. The next magnitude will again be the sum of the last two magnitudes in what is, an algorithmic pattern producing approximation to the Golden Mean (designated by the Greek letter φ,’phi’). As the series gets larger, the ratio (or proportion) between successive magnitudes will better approximate the irrational value of φ = 1.618033 … – which has an unlimited fractional part whilst the virtue of the Fibonacci numbers within the Series is that they are integers forming rational fractions.

Jupiter taken by the Wide Field Hubble Telescope by NASA, ESA, and A. Simon (Goddard Space Flight Center)
Continue reading “Fibonacci in Jupiter’s 12-fold Heaven”

Use of Ad-Quadratum at Angkor Wat

The large temple complex of Angkor Wat ( photo: Chris Junker at flickr, CC BY-NC-ND 2.0 )

Ad Quadratum is a convenient and profound technique in which continuous scaling of size can be given to square shapes, either from a centre or periphery. The differences in scale are multiples of the square root
of two [sqrt(2)] between two types of square: cardinal (flat) and diamond (pointed).

The diagonal of a square of unit size is sqrt(2), When a square is nested to just touch a larger square’s opposite sides, one can know the squares differ by sqrt(2)
Continue reading “Use of Ad-Quadratum at Angkor Wat”