π and the Megalithic Yard

The surveyor of megalithic monuments in Britain, Alexander Thom (1894 – 1985), thought the builders had a single measure called the Megalithic Yard which he found in the geometry of the monuments when these were based upon whole number geometries such as Pythagorean triangles. His first estimate was around 2.72 feet and his second and final was around 2.722 feet. I have found the two megalithic yards were sometimes 2.72 feet because the formula for 272/100 = 2.72 involved the prime number 17 as 8 x 17/ 100, and this enabled the lunar nodal period of 6800 days to be modelled and and the 33 year “solar hero” periods to be modelled, since these periods both involve the prime number 17 as a factor. In contrast, Thom’s final megalithic yard almost certainly conformed to ancient metrology within the Drusian module in which 2.7 feet times 126/125 equals 2.7216 feet, this within Thom’s error bars for his 2.722 feet as larger than 2.72 feet.

This suggests Thom was sampling more than one megalithic yard in different regions or employed for different uses. Neal [2000] found for Tom’s statistical data set having peaks corresponding to the steps of different modules and variations in ancient metrology, such as the Iberian with root 32/35 feet and the Sumerian with root 12/11 feet. It is only when you countenance the presence of prime numbers within metrological units that one breaks free of the inevitably weak state of proof as to what ancient units of measure actually were and, more importantly, why they were the exact values they were and further, how they came to be varied within their modules. However, the megalithic yard of 2.72 appears to outside the system in embodying the prime number 17 for the specific purpose of counting longer term periods which themselves embody that prime number.

The discipline of using only the first five primes {2 3 5 7 11} must have been accompanied by the perception that only if primes were dealt with could certain ends be served. This is crystal clear when we come to musical ratios in which the harmonic primes alone are used of {2 3 5} with an occasional “passenger” of the prime {7} as in 5040 which is 7 x 720, the harmonic constant.

Using 2.72 feet to count the Nodal Period

The first remarkable characteristic of 2.72 feet is that 8 x 17 in the numerator means that the approximation to π of 25/8 = 3.125 can, in (conceptually) multiplying a diameter, provide an image of 25 units on the circumference of a stone circle. For example a diameter of 2 MY would suggest 17 MY on the circumference, which is quite remarkable. Further to this, we know that the 6800 days of nodal cycle is factored as 17 x 400 and that the MY was shown (acceptably) to have been made up of 40 digits (in conformance to the general tradition within metrology that there are 16 digits per foot and 40 for a step of 2.5 feet, which a MY traditionally is). The circumference of 17 MY is then 17 x 40 digits which means that a diameter of 20 MY would give a circumference of 17 x 400 digits equalling 6800 digits as a countable circumference in digits per day.

This highlights how prime number factors played a role, in the absence of arithmetical methods, in solving the astronomical problems faced by the late stone age when counting time periods in days.

Vectors in Prehistory 1

In previous posts, it has been shown how a linear count of time can form a square and circle of equal perimeter to a count. In this way three views of a time count, relative to a solar year count, showed the differences between counts that are (long-term average) differential angular motion between sun and the moon’s cycle of illumination. Set within a year circle, this was probably first achieved with reference to the difference between the lunar year of 12 months (29.53 days) and the solar year of 12 average solar months (30.43 days). Note that in prehistory, counts were over long periods so that their astronomy reflected averages rather than moment-to-moment motions known through modern calculations.

The solar year was a standard baseline for time counting (the ecliptic naturally viewed as 365.25 days-in-angle, due to solar daily motion, later standardized as our convenient 360 degrees). Solar and other years became reflected in the perimeters of many ancient square and circular buildings, and long periods were called super years, even the Great Year of Plato, of the precession of the equinoxes, traditionally 25920 years long! The Draconic year, in which the Moon’s nodes travel the ecliptic, backwards, is another case.

Continue reading “Vectors in Prehistory 1”

Quantification of Eclipse Cycles

Following on from the last post:
Given the many sub-cycles found in the Moon’s behavior, and the angle of its orbit to the Ecliptic, one would expect the eclipse phenomenon to be erratic or random but in fact eclipses repeat quite reliably over relatively fixed periods that were quantified symbolically by megalithic astronomy, within monuments and by the “sacred” numbers and geometries which encapsulate eclipse cycles, as with many other cycles.

An eclipse cycle repeats, to greater or lesser degree of accuracy, over an integer number of days or months. And because of a lack of conventional arithmetic or notation like our own in the megalithic, the practical representation of a cycle would be a raw count of days or months, using uniform measures, which could then be interpreted by them using (a) the rational fractions of whole unit metrology, (b) the factorization of a measured length by counting within using measuring rods or (c) using right-triangles or half-rectangles, which naturally present trigonometrical ratios; to compare different time cycles.

The Eclipse Year

The solar year (365.242 days) is longer than the lunar year of 12 lunar months (354.367 days) and we know that these, when counted in day-inches, gave the megalithic their yard of 32.625 (32 and 5/8) inches and that, by counting months in megalithic yards over one year, the English foot (of 12 inches) was instead the excess over a single lunar year of the solar year, of 12.368 lunar months. 0.368 in our notation is 7/19 and the megalithic yard is close to 19/7 feet so that counting in months cancels the fraction to leave one foot.

Continue reading “Quantification of Eclipse Cycles”

The Integration of the Megalithic Yard

Above is a proposed geometric relation between Thom’s megalithic yard (2.72 feet), the royal cubit (1.72 feet) and the remen (1.2 feet). Alexander Thom’s estimate for it based on decades of work was refined from 2.72 to 2.722 feet at Avebury. If the origins of it are astronomical, then its value emerges from the Metonic period of 19 years which is 235 lunar months, making its value 19/7 feet or more accurately 2.715428571 (19008/7000) feet and this makes it 2.7 feet x 176/175 within ancient metrology. Another astronomical derivation is found at Le Manio as the difference between three lunar and three solar years, when counted in day-inches as 32 + 5/8th inches which is 2.71875 (87/32) feet. The megalithic yard of Thom’s first appraisal, of 2.72, probably arose from its megalithic rod (MR) of 6.8 feet since, the Nodal Period of the moon’s nodes take 6800 days which in feet would be 1000 MR. For a fuller explanation see my the appendix of my Language of the Angels book and my discussions of the Cumbrian stone circle, called Seascale by Thom and the only known example of a Type D flattened circle.

One can see that the Megalithic Yard is a tale of many variations, some of which might not consider how or why the megalithic might have come to adopt such a yard. I have come to trust simple integers and ratios to guide me to a possible megalithic pathway. To demonstrate, the above megalithic yard at Le Manio, of 32.625 inches is 29/32 of the English yard, and 32 lunar months (at Le Manio Quadrilateral) is 29 AMY. Such simple rationics is explored here.

Continue reading “The Integration of the Megalithic Yard”

Leak Project Interview

Rex Bear talked to me by Zoom on the 11th March; about the extensive background of my new book Sacred Geometry: Language of the Angels. Below is embedded from the Leak Project YouTube channel.

https://youtu.be/ThL4voX33k8

Geometry 6: the Geometrical AMY

By 2016 it was already obvious that the lunar month (in days) and the PMY, AMY and yard (in inches) had peculiar relationships involving the ratio 32/29, shown above. This can now be explained as a manifestation of day-inch counting and the unusual numerical properties of the solar and lunar year, when seen using day-inch counting.

It is hard to imagine that the English foot arose from any other process than day-inch counting; to resolve the excess of the solar year over the lunar year, in three years – the near-anniversary of sun and moon. This created the Proto Megalithic Yard (PMY) of 32.625 day-inches as the difference.

Figure 1 The three solar year count’s geometrical demonstration of the excess in length of 3 solar years over 3 lunar years as the 32.625 day-inch PMY.

A strange property of N:N+1 right triangles can then transform this PMY into the English foot, when counting over a single lunar and solar year using the PMY to count months.

The metrological explanation

Continue reading “Geometry 6: the Geometrical AMY”