Starcut Diagram: geometry to define tuning

This is a re-posting of an article thought lost, deriving in part from Malcolm Stewart’s Starcut Diagram. The long awaited 2nd edition Sacred Geometry of the Starcut Diagram has now been published by Inner Traditions. Before this, Ernest McClain had been working on tuning via Gothic master Honnecourt’s Diagram of a Man (fig. 2), which is effectively a double square version of the starcut diagram.

The square is the simplest of two dimensional structures to draw, giving access to many fundamental values; for example the unit square has the diagonal length equal to the square root of two which, compared to the unit side length, forms the perfect tritone of 1.414 in our decimal fractional notation (figure 1 left). If the diagonal is brought down to overlay a side then one has the beginning of an ancient series of root derivations usually viewed within the context of a double square, a context often found in Egyptian sacred art where “the stretching of the rope” was used to layout temples and square grids were used to express complex relationships, a technique Schwaller de Lubitz termed Canevas (1998). Harmonically the double square expresses octave doubling (figure 1 right).

Figure 1 left: The doubling of the square side equal 360 units and right: The double square as naturally expressing the ordinal square roots of early integers.

Musical strings have whole number lengths, in ratio to one another, to form intervals between strings and this gives geometry a closer affinity to tuning theory than the use of arithmetic to calculate the ratios within a given octave range. The musicology inferred for the ancient world by Ernest G. McClain in his Myth of Invariance (1976) was calculational rather than geometrical, but in later work McClain (Bibal 2012-13) was very interested in whatever could work (such as folding paper) but was especially interested in the rare surviving notebook of 13th century artist Villard de Honnecourt, whose sketches employed rectilinear frameworks within which cathedrals, their detailing, human and other figures could be drawn.

“I believe we have overlooked Honnecourt as a prime example of what Neugebauer meant in claiming Mesopotamian geometry to approach Renaissance levels illustrated in Descartes. If Honnecourt is 13th c. then he seems more likely to be preserving the ancient picture, not anticipating the new one.”

This draws one into significant earlier traditions of sacred art in Egypt (Canevas) and in Indian temple and statue design, and to Renaissance paintings (see end quote) in which composition was based upon geometrical ideas such as symmetry, divisions into squares and alignments to diagonals. Figure 2 shows one of Honnecourt’s highly stylised sketches of a man, using a technique still in use by a 20th century heraldic artist.

Ernest McClain, Bibal Group: 18/03/2012

Figure 2 The Honnecourt Man employing a geometrical canon.

The six units, to the shoulders of the man, can be divided to form a double square, the lower square for the legs and the upper one for the torso. The upper square is then a region of octave doubling. McClain had apparently seen a rare and more explicit version of this arrangement and, from memory, attempted a reconstruction from first principles (figure 3), which he shared with his Bibal colleagues, including myself.

Figure 3 McClain’s final picture of the Honnecourt Man, its implied Monochord of intervals and their reciprocals.

To achieve a tuning framework, the central crossing point had been moved downwards by half a unit, in a double square of side length three. On the right this is ½ of a string length when the rectangle is taken to define the body of a monochord. McClain was a master of the monochord since his days studying Pythagorean tuning. Perhaps his greatest insight was the fact that the diagonal lines, in crossing, were inadvertently performing calculations and providing the ratios between string lengths forming musical intervals.

Since the active region for octave studies is the region of doubling, the top square is of primary interest. At the time I was also interested in multiple squares and the Egyptian Canevas (de Lubitz. 1998. Chapter 8) since these have special properties and were evidently known as early as the fifth millennium BC (see Heath 2014, chapter two) by the megalith builders of Carnac. In my own redrawing of McClain’s diagram (figure 4) multiple squares are to be seen within the top square. This revealed that projective geometry was to be found as these radiant lines, of the sort seen in the perspective of three dimensions when drawn in two dimensions.

Figure 4 Redrawing McClain to show multiple squares, and how a numerical octave limit of 360 is seen creating lengths similar to those found in his harmonic mountains.

Returning to this matter, a recently developed technique of populating a single square provides a mechanism for studying what happens within such a square when “starcut”.

Figure 5 left: Malcolm Stewart’s 2nd edition book cover introducing right: the Starcut Diagram, applicable to the top square of Honnecourt’s octave model .

Malcolm Stewart’s diagram is a powerful way of using a single square to achieve many geometrical results and, in our case, it is a minimalist version that could have more lines emanating from the corners and more intermediate points dividing the squares sides, to which the radiant lines can then travel. Adding more divisions along the sides of the starcut is like multiplying the limiting number of a musical matrix, for example twice as many raises by an octave.

A computer program was developed within the Processing framework to increase the divisions of the sides and draw the resulting radiants. A limit of 720 was used since this defines Just intonation of scales and 720 has been identified in many ancient texts as having been a significant limiting number in antiquity. Since McClain was finding elements of octave tuning within a two-square geometry, my aim was to see if the crossing points between radiants of a single square (starcut) defined tones in the just scales possible to 360:720. This appears to be the case (figure 6) though most of the required tone numbers appear along the central vertical division and it is only at the locations nearest to D that eb to f and C to c# that only appear “off axis”. The pattern of the tones then forms an interesting invariant pattern.

Figure 6 Computer generated radiants for a starcut diagram with sides divided into six.

Figure 7 http://HarmonicExplorer.org showing the tone circle and harmonic mountain (matrix) for limit 720, the “calendar constant” of 360 days and nights.

Each of the radiant crossing points represents the diagonal of an M by N rectangle and so the rational “calculation” of a given tone, through the crossing of radiants, is a result of the differences from D (equal to either 360 or 720) to the tone number concerned (figure 8).

Figure 8 How the tone numbers are calculated via geometrical coincidence of cartesian radiants which are rational in their shorter side length at the value of a Just tone number

It is therefore no miracle that the tone numbers for Just intonation can be found at some crossing points and, once these are located on this diagram, those locations could have been remembered as a system for working out Just tone numbers.

Bibliography

Heath, Richard.

  • 2014. Sacred Number and the Lords of Time. Rochester, VT: Inner Traditions.
  • 2018. Harmonic Origins of the World: Sacred Number at the Source of Creation. Inner Traditions.
  • 2021. Sacred Geometry: Language of the Angels. Inner Traditions.

Lubitz, R.A. Schwaller de.

  • 1998. The Temple of Man: Apet of the South at Luxor. Vermont: Inner Traditions.

McClain, Ernest G. 

  • 1976. The Myth of Invariance: The Origin of the Gods, Mathematics and Music from the Rg Veda to Plato. York Beach, ME: Nicolas Hays.

Stewart, Malcolm.

  • 2022. Sacred Geometry of the Starcut Diagram: The Genesis of Number, Proportion, and Cosmology. Inner Traditions.

On the Harmonic Origins of the World

Does the solar system function as a musical instrument giving rise to intelligent life, civilization and culture on our planet? This 2018 article in New Dawn introduced readers to the lost science of the megalithic – how our ancestors discovered the special ratios and musical harmony in the sky which gave birth to religion and cosmology. The musical harmonies were the subject of my book released that year, called The Harmonic Origins of the World.

After the ice receded, late Stone Age people developed the farming crucial to the development of cities in the Ancient Near East (ANE). On the Atlantic coast of Europe, they also developed a now-unfamiliar science involving horizon astronomy. Megalithic monuments were the tools they used for this, some still seen in the coastal regions of present day Spain, France, Britain and Ireland. Megalithic astronomy was an exact science and this conflicts with our main myth about our science: that ours is the only true science, founded through many historical prerequisites such as arithmetic and writing in the ancient near east (3000- 1200 BC) and theory-based reasoning in Classical Greece (circa 400-250 BC), to name but two. Unbeknownst to us, the first “historical period” in the near east was seeded by the exact sciences of the megalithic, such as the accurate measurement of counted lengths of time, developed by the prehistoric astronomers. With the megalithic methods came knowledge and discoveries, and one discovery was of the harmonic ratios between the planets and the Moon.

Continue reading “On the Harmonic Origins of the World”

Introduction to my book Harmonic Origins of the World

Over the last seven thousand years, hunter-gathering humans have been transformed into the “modern” norms of citizens (city dwellers) through a series of metamorphoses during which the intellect developed ever-larger descriptions of the world. Past civilizations and even some tribal groups have left wonders in their wake, a result of uncanny skills – mental and physical – which, being hard to repeat today, cannot be considered primitive. Buildings such as Stonehenge and the Great Pyramid of Giza are felt anomalous, because of the mathematics implied by their construction. Our notational mathematics only arose much later and so, a different maths must have preceded ours.

We have also inherited texts from ancient times. Spoken language evolved before there was any writing with which to create texts. Writing developed in three main ways: (1) Pictographic writing evolved into hieroglyphs, like those of Egyptian texts, carved on stone or inked onto papyrus, (2) the Sumerians used cross-hatched lines on clay tablets, to make symbols representing the syllables within speech. Cuneiform allowed the many languages of the ancient Near East to be recorded, since all spoken language is made of syllables, (3) the Phoenicians developed the alphabet, which was perfected in Iron Age Greece through identifying more phonemes, including the vowels. The Greek language enabled individual writers to think new thoughts through writing down their ideas; a new habit that competed with information passed down through the oral tradition. Ironically though, writing down oral stories allowed their survival, as the oral tradition became more-or-less extinct. And surviving oral texts give otherwise missing insights into the intellectual life behind prehistoric monuments.

Continue reading “Introduction to my book Harmonic Origins of the World”

from Book 5: Harmonic Origins of the World

Intelligent Star Systems

The harmony of the spheres can only be found in our world of time, where it is a strong and compelling phenomenon. Such a harmony was no prescientific fantasy. Pythagoras, who coined the term, probably did so based on the geocentric time world, a view lost to history apart from cryptic references that can no longer be interpreted.

In our age of system science, musical harmony is not thought relevant to the design of dynamic systems such as the planets, yet they appear adapted to just intonation seen from the exclusive perspective of our planet. Why should our planet have a harmonious view of time, and what difference does time’s harmoniousness make to life on Earth? Is there some other purpose to this harmony or none at all? To answer such questions one has to recognize just intonation as being a holistic system that demands human insight into the nature of whole phenomena (a so-called gestalt). Such gestalts flow from the need to see higher-level relationships rather than the raw complexity of their parts. All higher structures of meaning subsume lower levels of meaning.  For example, microclimates are a structuring of meaning higher than  trees, water, weather, and topography, usefully integrating these parts within a newly perceived whole. Such insights reveal a higher idea that indicates new potentials within a system. The new level of conceptual order has not changed in the phenomenon but how we relate to it. This profound faculty is the basis of what we call understanding rather than knowing, and it enlarges our “world.” The world is already structured, and a sensory insight re-creates that structure as a simplifying aspect, already present, to expand the intelligibility of the sensory world and with it, our present moment. Insight and the world’s creation were considered similar acts within ancient cosmologies, in that an insight about the world resembles the structure of the world as it would be conceived by any god in the act of creating it. Such a vision involves a special effort but provides a creative view of the world, in which simplicity and relatedness replace functional complexity with a new appreciation of the sensory world. The celestial behavior in Earth’s skies is a prime example of such an action: the rotation of Earth, its orbit around the sun, the moon’s orbit, and its illumination by the sun complicate the observed orbital periods of the other planets and yet, that added complexity has produced harmonic simplicity between synodic periods!

Chapter 1 showed how Late Stone Age astronomers used geometrical counts of synodic periods to discover this harmony of the spheres, which modern astronomers have not seen because scientific calculation methods deal instead with planetary dynamics modeled by equations. Simplicity has somehow adapted our solar system without breaking physical laws. At the level of gravitational dynamics, many complexities were required to achieve just intonation seen only from Earth, especially the lengthening of the lunar month as an intermediary to the planetary synods seen from Earth. Any demiurgic preference for harmony (seen from Earth) resembles the human gestalt that revealed the harmony of the spheres to human sensory intelligence in the Late Stone Age, and it must be noted, humanity has become demiurgic since the Stone Age, creating man-made worlds.

Demiurgic intelligences are probably part of each star system and, if our star has a demiurgic intelligence, this action seems to have used the moon to establish a justly intoned time world for the third planet. It adapted the unchanging orbital pitches of an n-body planetary system to present harmonic synodic systems that planetary orbital periods alone could never express. Our geocentric system is harmonically founded between 1, the zeroth power of 2 (the Saturn synod) and the fifth power of 60 (YHWH, as 365-day year), which is the smallest numerical resolution to contain just intonation of both inner and outer planets, as in the implied holy mountains of our ancient texts.

Harmonic Origins of the World
Contents (272 pages, 100 b&w illustrations)
Preface
Introduction: The Significance of Planetary Harmony (5)
PART 1: RECOVERING LOST KNOWLEDGE OF THE WORLD SOUL
1 Climbing the Harmonic Mountain (20)
2 Heroic Gods of the Tritone (19)
3 YHWH Rejects the Gods (15)
4 Plato’s Dilemma (22)
PART 2: A COSMICALLY CREATIVE HARMONY
5 The Quest for Apollo’s Lyre (25)
6 Life on the Mountain (23)
PART 3 THE WAR IN HEAVEN
7 Gilgamesh Kills the Stone Men (16)
8 Quetzalcoatl’s Brave New World (31)
9 YHWH’s Matrix of Creation (19)
10 The Abrahamic Incarnation (15)
Postscript: Intelligent Star Systems
APPENDIX 1: Astronomical Periods and Their Matrix Equivalents
APPENDIX 2: Ancient Use of Tone Circles (11)
Notes
Bibliography
Index

Use of Ad-Quadratum at Angkor Wat

The large temple complex of Angkor Wat ( photo: Chris Junker at flickr, CC BY-NC-ND 2.0 )

Ad Quadratum is a convenient and profound technique in which continuous scaling of size can be given to square shapes, either from a centre or periphery. The differences in scale are multiples of the square root
of two [sqrt(2)] between two types of square: cardinal (flat) and diamond (pointed).

The diagonal of a square of unit size is sqrt(2), When a square is nested to just touch a larger square’s opposite sides, one can know the squares differ by sqrt(2)
Continue reading “Use of Ad-Quadratum at Angkor Wat”

God of Harmony Osiris in Egyptian Mice Tomb

Recently an “early Ptolomaic” tomb was discovered similar in themes to the famous Egyptian Books of the Dead (Middle Kingdom). Normally written on papyrus, they feature multiple tableau of Osiris judging the dead and other scenes. Osiris is a long lasting and perhaps supreme god whose cult was present throughout 3000 years of Dynastic history. I have previously interpreted his throne through drawings but, in the new tomb, he is painted on the walls at least twice and the design of his throne looks like layers of “eggs”. Below is one of the press pictures taken from the Guardian, and the headline is Mummified mice found in ‘beautiful, colourful’ Egyptian tomb.

Continue reading “God of Harmony Osiris in Egyptian Mice Tomb”