Tetraktys as plan of planetary harmony and the four Elements

Figure 1 The elimination of 5 as a factor in the harmonic mountain for 36 lunar years, resolved using matrix units of one tenth of a month and the limit 360 units.

In a previous post I explored the astronomical matrix presented in The Harmonic Origins of the World with a view to reducing the harmonic between outer planets and the lunar year to a single harmonic register of Pythagorean fifths. This became possible when the 32 lunar month period was realized to be exactly 945 days but then that this, by the nature of Ernest McClain’s harmonic mountains (figure 1) must be 5/4 of two Saturn synods.

Using the lowest limit of 18 lunar months, the commensurability of the lunar year (12) with Saturn (12.8) and Jupiter (13.5) was “cleared” using tenths of a month, revealing Plato’s World Soul register of 6:8::9:12 but shifted just a fifth to 9:12::13.5:18, perhaps revealing why the Olmec and later Maya employed an 18 month “supplementary” calendar after some of their long counts.

By doubling the limit from 18 to three lunar years (36) the 13.5 is cleared to the 27 lunar months of two Jupiter synods, the lunar year must be doubled (24) and the 32 lunar month period is naturally within the register of figure 1 whilst 5/2 Saturn synods (2.5) must also complete in that period of 32 lunar months.

Continue reading “Tetraktys as plan of planetary harmony and the four Elements”

Megalithic Measurement of Jupiter’s Synodic Period

image: Jupiter with now-shrunken red spot – Hubble Space Telescope

Though megalithic astronomers could look at the sky, their measurement methods were only accurate using horizon events. Horizon observations of solstice sunrise/set each year, lunar extreme moonrises or settings (over 18.6 years) allowed them to establish the geometrical ratios between these and other time periods, including the eclipse cycles. In contrast, the synod of Jupiter is measured between its loops in the sky, upon the backdrop of stars, in which Jupiter heads backwards each year as the earth passes between itself and the Sun. That is, Jupiter goes retrograde relative to general planetary direction towards the east. Since such retrograde movement occurs over 120 days, Jupiter will set 120 times whilst moving retrograde. This allowed megalithic astronomy to study the retrograde Jupiter, but only when the moon is conjunct with Jupiter in the night sky and hence will set with Jupiter at its own setting.


Figure 1 The metamorphosis of loop shape when Jupiter is in different signs of the Zodiac
Continue reading “Megalithic Measurement of Jupiter’s Synodic Period”

Natural Evolution of our Modern Tuning System

The diatonic or natural scale, consisting of five whole tones and two opposed semitones, is most familiar today in the white notes of the piano [Apel. see Diatonic]. On the piano this would be called C-major, which imposes the sequence of tones (T) and semitones (S) as T-T-S-T-T-T-S in which the initial and final tetrachords are identically T-T-S, leaving a tone between F and G, the two fixed tones of the Greek tetrachordal system

The diatonic scale is … an abstractum; for all we have is five tones and two semitones a fifth apart [until] we fix the place of the semitones within the scale, thereby determining a definite succession …, [and] we create a mode. [Levarie. 213].

Musical Morphology,. Sigmund Levarie and Ernst Levy. Ohio:Kent State 1983. 213.

One can see that the tones are split by the major diatonic into one group of two (T-T) and one group of three (T-T-T), so the semitones are opposed (B-F) towards the tonic C as in figure 1.


Figure 1 Tone circle and tetrachords for C-Major also called the modal scale of Ionian

Letters such as C are called note classes so as to label the tones of a diatonic scale which, shown on the tone circle, can be rotated into any key signature of twelve keys including flattened or sharpened notes, shown in black in figure 1. We will first show how these black notes came about naturally, due to two aspects of common usage.

The note classes arose from the need of choral music to notate music so that it could be stored and distributed. When we “read music” today, the tablature consists of notes placed within a set of five lines with four gaps, and two extendable areas above and below in which only seven note classes can be placed, seven being the number of note classes in the modal diatonic and the number of white keys on the keyboard, which is the other aspect of usage.

Continue reading “Natural Evolution of our Modern Tuning System”

Distribution of Prime Numbers in the Tone Circle

first published 13 February 2018

The ancient notion of tuning matrices, intuited by Ernest G. McClain in the 1970s, was based on the cross-multiples of the powers of prime numbers three and five, placed in an table where the two primes define two dimensions, where the powers are ordinal (0,1,2,3,4, etc…) and the dimension for prime number 5, an upward diagonal over a horizontal extent of the powers of prime number 3. Whilst harmonic numbers have been found in the ancient world as cuneiform lists (e.g. the Nippur List circa 2,200 BCE), these “regular” numbers would have been known to only have factors of the first three prime numbers 2, 3 and 5 (amenable to their base-60 arithmetic). Furthermore, the prime number two would have been seen as not instrumental in placing where, on such harmonic matrices, each harmonic number can be seen on a harmonic matrix (in religious terms perhaps a holy mountain), as

  • “right” according to its powers of 3.
  • “above” according to its powers of 5.

The role of odd primes within octaves

An inherent duality of perspective was established, between seeing each regular number as a whole integer number and seeing it as made up of powers of the two odd two prime numbers, their harmonic composition of the powers of 3 and 5 (see figure 1). It was obvious then as now that regular numbers were the product of three different prime numbers, each raised to different powers of itself, and that the primes 3 and 5 had the special power of both (a) creating musical intervals within octaves between numerical tones and (b) uniquely locating each numerical tone upon a mountain of numerical powers of 3 and 5.


Figure 1 Viewing the harmonic primes 3 and 5 as a mountain of their products, seen as integer numers or as to these harmonic primes
Continue reading “Distribution of Prime Numbers in the Tone Circle”

Harmonic Astronomy within Seascale Flattened Circle

first published in July 2018

Only two type-D stone circles (see figure 3) are known to exist, called Roughtor (in Cornwall) and Seascale (in Cumbria). Seascale is assessed below, for the potential this type of flattened circle had to provide megalithic astronomers with a calendrical observatory. Seascale could also have modelled the harmonic ratios of the visible outer planets relative to the lunar year. Flattened to the north, Seascale now faces Sellafield nuclear reprocessing plant (figure 1).


Figure 1 Seascale type-D flattened circle and neighbouring nuclear facility.
photo: Barry Teague

Stone Age astronomical monuments went through a series of evolutionary phases: in Britain c. 3000 BC, stone circles became widespread until the Late Bronze Age c. 1500 BC. These stone circles manifest aspects of Late Stone Age art (10,000 – 4500 BC) seen in some of its geometrical and symbolic forms, in particular as calendrical day tallies scored on bones. In pre-literate societies, visual art takes on an objective technical function, especially when focussed upon time and the cyclic phenomena observed within time. The precedent for Britain’s stone circle culture is that of Brittany, around Carnac in the south, from where Megalithic Ireland, England and Wales probably got their own megalithic culture.

Continue reading “Harmonic Astronomy within Seascale Flattened Circle”

Equal Temperament through Geometry and Metrology

The form of musical scale we use today is the (apparently modern) equal tempered scale. Its capabilities express well the new mind’s freedom of movement in that it allows us to change key to play compositions that move between alternative frameworks. This possibility was known to ancient tuning theory, could be approximated within Just intonation’s chromatic notes and was discussed by Plato as forming the constitution of one of his harmonic city states called Magnesia.

Relationship of the Equal Temperament Keyboard to the (logarithmic base-2) tone circle of an octave. We choose D (the Dorian scale) because it is symmetrical on both keyboard and tone circle. Equal Temperament supplies tones which enable any scale to be played starting from any note, though it is the Ionian (C-major) which defines modern key signatures.
Continue reading “Equal Temperament through Geometry and Metrology”