The Megalithic Numberspace

above: counting 37 lunar months six times to reach 222,
one month short of 223: the strong Saros eclipse period.

There is an interesting relationship between the multiple interpretations of a number as to its meaning, and the modern concept of namespace. In a namespace, one declares a space in which no two names will be identical and therefore each name is unique and this has to be so that, in computer namespaces such as web domain names, the routes to a domain can be variable but the destination needs to be a unique URL.

If sacred numbers had unique meanings then they would be like a namespace. Instead, being far more limited in variety, sacred numbers have more meanings, or interpretations, just as one might say that London has many linkages to other cities. In an ordinal number set, there are many relationships of a number to all the other numbers. This means whilst their are infinite numbers in the set of positive whole numbers, there are more than an infinity of relationships between the members of that set, such as shared number factors or squares, cubes, etc. of a number.

The mathematician Georg Cantor saw “doubly infinite” sets. Sets of relationships between members of an already infinite set, must themselves be more than infinite. He called infinite sets as aleph-zero and the sets of relationships within an infinite set (worlds of networking), he called aleph-one.

Originally, Cantor’s theory of transfinite numbers was regarded as counter-intuitive – even shocking.

Wikipedia

However, in the world of sacred numbers, although there can be large numbers, in the megalithic the numbers were quite small; partly due to the difficulty that numbers-as-lengths were physically real while later numeracy abstracted numbers into symbols and, using powers of ten, modern integers are a series of place ordered numbers (not factors) in base 10, as with 12,960,000 – possible for the ancient Babylonians but, I believe, not expected for the early megalithic.

Continue reading “The Megalithic Numberspace”

Geometry 2: Maintaining integers using fractions

understanding the megalithic: circular structures: part 2

The megalithic sought integer lengths because they lacked the arithmetic of later millennia. So how did they deal with numbers? There is plenty of evidence in their early monuments that today’s inch and foot already existed and that these, and other units of measure, were used to count days or months. From this, numbers came to be known by their length in inches and later on as feet, and longer lengths like a fathom of five feet, the cubit of 3/2 feet and, larger still, furlongs and miles – to name only a few.

So megalithic numeracy was primarily associated with lengths, a system we call metrology. Having metrology but not arithmetic, the integer solutions to problems became a necessity. Incidentally, it was because of their metrological numeracy that the megalithic chanced upon a rich seam of astronomical meaning within the geocentric time world that surrounds us, a seam well-nigh invisible to modern science. Their storing of numbers as lengths also led to their application to the properties geometrical structures have, to replicate what arithmetic and trigonometry do, by using right triangles and a system of fractional measures of a foot (see later lesson – to come). In what follows, for both simplicity and veracity, we assume that π was too abstract for the megalithic, since they first used radius ropes to create circles, so that 2π was a more likely entity for them to have resolved.

Continue reading “Geometry 2: Maintaining integers using fractions”

Fibonacci in Jupiter’s 12-fold Heaven

The Fibonacci series is an ideal pattern, widely found within living systems, in which the present magnitude or location of something is the product of two previous magnitudes or locations of it. The next magnitude will again be the sum of the last two magnitudes in what is, an algorithmic pattern producing approximation to the Golden Mean (designated by the Greek letter φ,’phi’). As the series gets larger, the ratio (or proportion) between successive magnitudes will better approximate the irrational value of φ = 1.618033 … – which has an unlimited fractional part whilst the virtue of the Fibonacci numbers within the Series is that they are integers forming rational fractions.

Jupiter taken by the Wide Field Hubble Telescope by NASA, ESA, and A. Simon (Goddard Space Flight Center)
Continue reading “Fibonacci in Jupiter’s 12-fold Heaven”

Iceland’s Model of the Earth’s Meridian

Einar Palsson [1, at end] saw that the myths of foundation for Iceland’s settlement in 930 had Pythagorean roots. Since then Petur Halldorsson has identified patterns that could not have been influenced by Pythagoras (c. 600 BC) and Pythagoras was known to have adapted the existing number sciences found (according to his myth) from Egypt to China.

Such patterns, called Cosmic Images by Halldorsson [3], seek to establish a geometric connection between places on the landscape and on the horizon, here in the south-western region near Reykjavik, the only Icelandic city. The spirit of a region or island was integrated through organising space in this way, according to centers (Things) of circles and their radius and diameter as numbers of paces, circles punctuated with places and alignments to other places, horizon events or cardinal directions. John Michell provided a guide to some of the techniques in his books [2, at end].


Figure 1 The Cosmic Image east of Reykjavik proposed by Palsson
Continue reading “Iceland’s Model of the Earth’s Meridian”

Erdeven Alignment’s counting of Metonic and Saros Periods

first published in March 2018

The word Alignment is used in France to describe its stone rows. Their interpretation has been various, from being an army turned to stone (a local myth) to their use, like graph paper, for extrapolation of values (Thom). That stone rows were alignments to horizon events gives a partial but useful explanation, since menhirs (or standing stones) do form a web of horizon alignments to solstice sun and to the moon’s extreme rising and setting event, at maximum and minimum standstill. At Carnac the solstice sun was aligned to the diagonal of the 4 by 3 rectangle and maximum and minimum standstill moon aligned to the diagonal of a single or double square, respectively.

It seems quite clear today that stone rows at least represented the counting of important astronomical time periods. We have seen at Crocuno that eclipse periods, exceeding the solar year, are accompanied by some rectalinear structures (Le Manio, Crucuno, Kerzerho) which embody counting in miniature, as if to record it, and it has been observed that cromlechs (or large stone kerb monuments) were built at the ends of the long stone rows of Carnac and Erdeven. Sometimes, a cromlech initiated a longer count,with or without stone rows, that ended with a rectangle (Crucuno). The focus on counting time naturally reveals a vernacular quite unique to this region and epoch. We have seen that the Kerzerho alignments were at least a 4 by 3 rectangle which recorded the 235 lunar months in feet along its diagonal to midsummer solstice sunset. After that rectangle there follows a massive Alignment of stone rows to the east,ending after 2.3 km having gradually changed their bearing to 15 degrees south of east. Just above the alignments lies a hillock with multiple dolmens and a north-south stone row (Mané Braz) whilst below its eastern extremity lies the tumulus and dolmen,”T-shaped passage-grave” (Burl. Megalithic Brittany. 196) called Mané Groh.


Figure 1 The intermittent extent of the Erdevan Alignments, and associated dolmens
Continue reading “Erdeven Alignment’s counting of Metonic and Saros Periods”

Number Symbolism at Table des Marchands

Table des Marchands, a dolmen at Lochmariaquer, can explain how the Megalithic came to factorise 945 days as 32 lunar months by looking at the properties of the numbers three, four and five. At that latitude, the solstice angle of the sun on the horizon shone along the 5-side of a 3-4-5 triangle to east and west, seen clearly at the Crucuno Rectangle [post2post id=”237″].

Before numbers were individually notated (as with our 3, 4 and 5 rather than |||, |||| and |||||) and given positional notation (like our decimal seen in 945 and 27), numbers were lengths or marks and, when marks are compared to accurately measured lengths measured out in inches, feet, yards, etc. then each vertical mark would naturally have represented a single unit of length. This has not been appreciated as having been behind marks like the cuneiform for ONE; that it probably meant “one unit of length”.


Figure 1 The end and cap stone inside the dolmen Table des Marchands in which the elementary numbers in columns and rows perhaps inspired its attribution to the accounts of merchants
Locmariaquer (Morbihan, Bretagne, France) : la Table des Marchand, interieur.
Continue reading “Number Symbolism at Table des Marchands”