Le Menec: as Sidereal Observatory

Today, an astronomer resorts to the calculation of where sun, moon or star should be according to equations of motion developed over the last four centuries. The time used in these equations requires a clock from which the object’s location within the celestial sphere is calculated. Such locations are part of an implicit sky map made using equatorial coordinates that mirror the lines of longitude and latitude. Our modern sky maps tell us what is above every part of the earth’s sphere when the primary north-south meridian (at Greenwich) passes beneath the point of spring equinox on the ecliptic. Neither a clock, a calculation nor a skymap was available to the megalithic astronomer and, because of this, it has been presumed that prehistoric astronomy was restricted to what could be gleaned from horizon observations of the sun, moon, and planets.

Even though megalithic people could not use a clock nor make our type of calculations, they could use the movement of the stars themselves, including the sun by day, to track sidereal (or stellar) time provided they could bring this stellar time down to the earth. This they appear to have done at Le Menec, using the cromlech’s defining circle, which was built into its design so as to become a natural sidereal clock synchronized to the circumpolar stars.

Figure 4 The Circumpolar Stars looking North from Le Menec in 4000 BCE, when the cromlech was probably built. There is no north star but marker stars travel anti-clockwise and these can align to foresights at their extreme azimuthal “elongation”, as explained below.

The word sidereal means relating to stars and, more usually, to their rotation around the earth observer as if these stars were fixed to a rotating celestial sphere. This rotation is completely reliable as a measure of time since it is stabilized by the great mass of the spinning earth. However, in a modern observatory this sidereal time must be measured indirectly using an accurate mechanical or electronic clock. These clocks can only parallel the rotation of the earth in a sidereal day, which is just under four minutes less than our normal day. Nonetheless, a sidereal day is again given 24 ‘hours’ in our sky maps and it is these hours which are then projected upon the celestial sphere as hours (minutes and seconds) of Right Ascension, hours in the rotation of the earth during one sidereal day.

NEXT: using Circumpolar Marker Stars

CONTENTS

This paper proposes that an unfamiliar type of circumpolar astronomy was practiced by the time Le Menec was built, around 4000 BCE.

  1. Abstract
  2. Start of Carnac’s Alignments
  3. as Sidereal Observatory
  4. using Circumpolar Marker Stars
  5. dividing the Circumpolar stars
  6. maintaining Sidereal Time in Daylight
  7. measuring the Moon’s Progress
  8. as Type 1 Egg
  9. transition from Le Manio
  10. the Octon of 4 Eclipse Years
  11. building of Western Alignments
  12. key lengths of Time on Earth

THE MEANING OF LE MENEC (PDF)

This paper proposes that an unfamiliar type of circumpolar astronomy was practiced by the time Le Menec was built, around 4000 BCE. This observatory enabled the rotation of the earth and ecliptic location of eastern and western horizons to be known in real time, by observing stellar motion by night and solar motion by day. This method avoided stellar extinction angles by measuring the circular motion of a circumpolar marker star as a range in azimuth, which could then be equated with the diameter of a suitably calibrated observatory circle. The advent of day-inch counting and simple geometrical calculators, already found at Le Manio’s Quadrilateral, enabled the articulation of large time periods within Carnac’s megalithic monuments, the Western Alignments being revealed to be a study of moonrises during half of the moon’s nodal period. Le Menec’s Type 1 egg is found to be a time-factored model of the moon’s orbit relative to the earth’s rotation. This interpretation of Le Menec finds that key stones have survived and that the gaps seen in the cromlech’s walls were an essential part of its symbolic language, guiding contemporary visitors as to how its purpose was to be interpreted within the pre-literate megalithic culture.

Two key lengths are found at Le Manio and Le Menec: The first, of 4 eclipse years is a day-inch count of the Octon eclipse cycle; the second is a four solar year count that, with the first, forms a triangle, marked clearly by stones at Le Menec. The principles worked out at Le Manio appear fully developed in Le Menec’s western cromlech, including the use of an 8 eclipse year day-inch count, consequently forming a diameter of 3400 megalithic inches which equals in number the days in half a nodal period. The scaling of the Western Alignments is found to be 17 days per metre, a scaling naturally produced by the diagonal of a triple square geometrical construction. A single sloping length on the top of the central stone initiating row 9, indicates a single lunar orbit at 17 days per metre, a length of 1.607 metres. This control of time counting within geometrical structures reveals that almost all of Le Menec’s western cromlech and alignments express a necessary form, so as to represent a megalithic study of (a) circumpolar time as having 365 time units, (b) the moon’s orbit as having 82 times 122 of those units and (c) the variations of successive moonrises over most of a lunar nodal period of 18.6 solar years.