In early education of applied mathematics, there was a simple introduction to vector addition: It was observed that a distance and direction travelled followed by another (different) distance and direction, shown as a diagram as if on a map, as directly connected, revealed a different distance “as the crow would fly” and the direction from the start.
The question could then be posed as “How far would the plane (or ship) be, from the start, at the end”. This practical addition applies to any continuous medium, yet the reason why took centuries to fully understand using algebraic math, but the presence of vectors within megalithic counted structures did not require knowledge of why vectors within geometries like the right triangle, were able to apply vectors to their astronomical counts.
Continue reading “Vectors in Prehistory 2”