Geometry 5: Easy application of numerical ratios

above: Le Manio Quadrilateral

This series is about how the megalithic, which had no written numbers or arithmetic, could process numbers, counted as “lengths of days”, using geometries and factorization.

My thanks to Dan Palmateer of Nova Scotia
for his graphics and dialogue for this series.

The last lesson showed how right triangles are at home within circles, having a diameter equal to their longest side whereupon their right angle sits upon the circumference. The two shorter sides sit upon either end of the diameter (Fig. 1a). Another approach (Fig. 1b) is to make the next longest side a radius, so creating a smaller circle in which some of the longest side is outside the circle. This arrangement forces the third side to be tangent to the radius of the new circle because of the right angle between the shorter sides. The scale of the circle is obviously larger in the second case.

Figure 1 (a) Right triangle within a circle, (b) Making a tangent from a radius. diagram of Dan Palmateer.

Figure 1 (a) Right triangle within a circle, (b) Making a tangent from a radius.

Continue reading “Geometry 5: Easy application of numerical ratios”

pdf: Synchronicity of Day and Year with the Lunar Orbit

This document was prepared by Richard Heath as a letter for Nature magazine and submitted on 14th April 1994 but remained unpublished. For readers of the Matrix of Creation (2nd ed, Inner Traditions Press, 2004) it marks the discovery of a unit of time proposed and named the Chronon, as being 1/10000th of the Moon’s orbit and also the difference between the sidereal and tropical day of the Earth. The paper also documents a discovery made, with Robin Heath, later to be documented in his books: that one can divide up the solar year by its excess over the eclipse year to reveal an 18.618:19.618 ratio between these years, and many other interesting numerical facts not mentioned in this place. The puzzle here is a connection between the rotation of the Earth, the solar year and the precession of the Moon’s orbit which (a) may be explainable by science (b) appears to have puzzled Megalithic astronomers and (c) should puzzle us today.

pdf: Counting lunar eclipses using the Phaistos Disk

This paper* concerns itself with a unique fired-clay disk, found by Luigi Pernier in 1908 within the Minoan “palace” of Phaistos (aka Faistos), on the Greek island of Crete. Called the Phaistos Disk, its purpose or meaning has been interpreted many times, largely seen as either (a) a double-sided text in the repeated form of a spiral and outer circle written using an unknown pictographic language stamped in the clay or (b) as an astronomical device, record or handy reference. We provide a calendric interpretation based on the simplest lunar calendars known to apply in Minoan times, finding the Disk to be (a) an elegant solution to predicting repeated eclipses within the Saros period and (b) an observation that the Metonic is just one lunar year longer, and true to the context of the Minoan culture of that period.

*First Published on 26 May 2017
web page version