# Utility of the Ushtogai Square to count the Nodal Period

Using Google Earth, a large landform was found in Kazakhstan (Dmitriy Dey, 2007); a square 940 feet across with diagonals, made of evenly spaced mounds. We will demonstrate how the square could have counted the lunar nodal period of 6800 days (18.617 solar years)

images courtesy of Wild Ticket

## Counting the Lunar Nodal Period

One can see the side length of the square contains seventeen (17) mounds, with 16 even distances between the mounds. Were one to count each side as 17 mounds, then four times 17 gives 68 which reminds us of the 6800 days in the moon’s nodal period of 18.617 years. If 17 can be multiplied by 100, then one could count the nodal period in days, and to do this one notices that the diagonals have one central space, around which each of four arms are 10 mounds long.

The Ushtogai Square from above, north to the top.

Each side length of 17 mounds forms a triangle to the central space, perhaps for central control, with two sides (left and right) of 10 mounds each. As with our own decimal counting of units and tens (as in 12) there could have been a day marker placed in the center.  On day 1, it was moved to the first mound on the left. Every day, the left marker moves towards the left corner mound. Upon reaching the corner, two things happen.

1. The day marker returns to the center and,
2. A ten-day marker then starts its own journey to the right hand corner.

The left-hand day counting would continue on the next day, for ten more days, whereupon the same action, incrementing the ten counter, would mark another ten days in a further step between mounds, towards the right hand corner.

After 100 days, the marker of ten-day periods has reached the right hand corner and a new hundred day marker is deployed, to record hundreds of days per mound. Only after the first 100 days is the hundred marker placed upon the left-hand corner mound (that might have represented 100 days after the maximum standstill of the moon.)

The counting scheme for one quarter of the nodal period, repeated in each quadrant to count 6800 days

All of the above is repeated, slowly moving the hundred-day counter from the left corner to the right, at which time the moon no longer exceeds the solar extremes of summer and winter solstice in its range of rising and setting every orbit of, on average, 27.32166 days.

### In conclusion …

There is a very beautiful correspondence between the geometry of Ushtogai and the nodal period of the moon. But in a following article we will explore the parallel meaning of this monument as a counter of lunar months: to use the outer perimeter to study the Metonic and Saros eclipse periods.

There is a second article on Ustogai here.

For more information on this sort of astronomical counting in the prehistoric period, and of the details of the major time periods of the moon and sun,
these can be found in my books,
Sacred Number and the Lords of Time and
Sacred Geometry: Language of the Angels.