Interview with Jim Harold

This is one hour interview around my new book on Ancient Goddess Cultures use of sacred geometry and other skills the ancients had, which our present culture dutifully ignore. below: Interviewer Jim Harold at Stonehenge vis Facebook.

Please click on this link to listen to our interview: https://content.blubrry.com/paranormalplus/Sacred_Geometry_in_Ancient_Goddess_Cultures-Ancient_Mysteries_On_The_Air_109.mp3

Metrology of a Bronze Age Dodecahedron

The Norton Disney Archaeology Group found an example of a “Gallo Roman Dodecahedron”. One of archaeology’s great enigmas,
there are now about 33 known examples in what was Roman occupied Britain.

An Interpretation of its Height

The opposed flat pentagons of a regular duodecagon gives us its height, in this case measured to be 70 mm. Dividing 0.070 meters by 0.3048 gives 0.22965 feet and, times 4, gives a possible type of foot as 0.91864 or 11/12 feet**.

** Where possible, one should seek the rational fraction of the foot, here 11/12, over the decimal measurement which assumed base-10 arithmetic and loses the integer factors at work within the system of ancient foot-based metrology.

The Simplest Likelihood

Continue reading “Metrology of a Bronze Age Dodecahedron”

Reviews: New Dawn and Midwest Book Review

The May-June edition of New Dawn has this review from Alan Glassman of Sacred Geometry in Ancient Goddess Cultures.

Midwest Book Review

Below is a Midwest Book Review for  Sacred Geometry in Ancient Goddess Cultures

Critique: This large format (8 x 0.8 x 10 inches, 2.16 pounds) hardcover edition of “Sacred Geometry in Ancient Goddess Cultures: The Divine Science of the Female Priesthood” from Inner Traditions beautifully and profusely illustrated throughout and of immense value to readers with an interest in the sciences of antiquity in general, and the metaphysical history of numbers/mathematics in particular. While a unique and invaluable pick for personal, professional, community, and college/university library collections, it should be noted for historians, as well as metaphysical students and practitioners that the book is also available in a digital book format (Kindle, $31.99).

New Dawn Review

New Dawn Magazine pages: for the previous edition and the May-June, edition with the review (see below).

The control bar allows “full screen” and many other features.

Cubes: The Ancient Division of the Whole

Volume as cubes reveal the wholeness of number as deriving from the unit cube as corner stone defining side length and “volume” of the whole.

The first cube (above left) is a single cube of side length one. One is its own cornerstone. The first cubic number is two to the power of three, with side length two and volume equal to eight cubes that define the unit corner stone.

In modern thinking, and functional arithmetic, volume increases with side length but the cube itself, as archetype of space, is merely divided by the side length of the unit cornerstone, which is 1/8th the volume and therefore reciprocal to the volume of 8 leaving the cube singular.

This may not seem important but, by dividing a whole cube, one is releasing more and more of the very real behavior that exists between numbers, within the cube. For example the number 8 gives relations between numbers 1 to 8, such as the powers of two {1,2,4,8} and the harmonic ratios {2/1, 3/2, 4/3,5/4,6/5}. These can give an important spine of {4/3, 5/4,6/5} which equals 6/3 = 2 of the yet to (numerically) be octave of eight note classes. Moving to side length 3, the cube of three is twenty seven (27), as seen in figure above, top right. To obtain it, the corner stone must be side length 1/3, and volume 1/27 so that, in these units, the volume of the cube is 27.

If one were to reciprocally double the 1/3 side length, each cornerstone unit would have 8 subunits, so that the volume of 27 would be times 8 which equals Plato’s number of 216. Another view is then that the cornerstone side length has divided the bottom right cube into six units which number, 6, cubed, is 216 a perfect number for Plato.

By accepting the cube of one as the whole, this form of thinking reciprocally divides that whole side length to generate an inner structure within the whole cube of one, equal to the denominator of the reciprocation. The role of the whole is then to be the arithmetic mean between a number and its reciprocal. This procedure maintains balance between what is smaller than the whole (the reciprocal) and what is larger than the whole (in this case the volume).

In ancient tuning theory this was expressed by the two hexchords descending and ascending from the tonic (we might call do), expressed by the two hands. The octave of eight and the cube are both wholes to be broken into by numbers greater than one by means of reciprocation.

Ernest G. McClain revealed the scale of such thinking was massive, whilst also but secretly reciprocal, so that a limiting number could express how different wholes will behave due to their inner diversity of numbers at work within them.

In this example, a musical code for planetary resonance is revealed within the metrology of the Parthenon (above), implied tone set (right) and octave mountain of numbers below 1440 (left bottom). In this case the number 24 has been multiplied by 60 to give a limiting number of 1440. The cornerstone in this case is bottom left of the mountain = 1024, a pure power of 210.

By simply quoting a limiting number, in passing, ancient texts could, in the hands of an initiate, create an enormous world of tonal and impied religious meaning – through a kind of harmonic allusion.

It is only by using the conceptual approach of the ancients, that their intellectual life can be recovered – just by adding the waters of number and some powers of imagination.

Design of the Taj Mahal: its Façade

The Taj Mahal is one of the most recognizable buildings on earth. It was built by a Moghul king as a memorial for his dead queen and for love itself. The Mughals became famous for their architecture and the Persian notion of the sacred garden though their roots were in Central Asia just north of Persia.

I had been working on Angkor Wat, for my soon to be released book: Sacred Geometry in Ancient Goddess Cultures, where the dominant form of its three inner boundary walls (surrounding the inner sanctum) were in the rectangular ratio of outer walls of six to five. A little later I came across a BBC program about the Mughals and construction of the Taj by a late Moghul ruler, indicating how this style almost certainly arose due the Central Asian influences and amongst these the Samanids and the Kwajaghan (meaning “Masters of Wisdom”). I had also been working on the facades of two major Gothic Cathedrals (see post), and when the dimensions of the façade of the Taj Mahal was established, it too had dimensions six to five. An online pdf document decoding the Taj Mahal, established the likely unit of measure as the Gaz of 8/3 feet (a step of 2.5 feet of 16/15 English feet; the Persepolitan root foot *(see below: John Neal. 2017. 81-82 ). Here, the façade is 84 by 70 gaz.

Continue reading “Design of the Taj Mahal: its Façade”

The Moon is Key to our Survival

With the advent of many orbital missions, the Moon is threatened with orbital and other changes due to space travel.

The modern theory of relativity has joined the worlds of space and time, now called spacetime. As beings we live in space while moving through time, and both these are assumed to be neutral dimensions having mere extension. However, spacetime is distorted by the massive gravitational objects found in solar systems, these exerting an attractive force on all objects including ourselves. As humans, we are therefore locked onto the surface of the earth by gravity, viewing a solar system of eight orbiting planets seen in the sky from the surface of the third planet from the sun. The earth has an unusually large moon which has fallen into resonance with the planets, a resonance then belonging to time.

The Moon was formed 4 to 5 billion years ago and this affected the Earth’s geology, stabilized its tilt (giving stability to the seasons) and providing tidal reaches on coasts. But apart from such direct physical changes to the earth, the moon has now developed resonances with the solar system, especially its outer giant planets, and this has given time on earth a highly specific resonant environment, based upon the lunar month and year of 12 lunar months. This resonant network appears to be numerical when counting days, months and years, in between significant events in the sky.

The structure of time is numerical because of these resonances between the moon, the sun and the planets. This resonance came to be known by previous civilizations and was thought meaningful in explaining how the world was created. Time was deemed spiritual because its organisation allowed human beings to understand the purpose of life and of the earth through the structure of time. In particular, the moon was a key to unlocking the time world as a link to a higher or spiritual world, a literal sky heaven organised according to numbers.

Continue reading “The Moon is Key to our Survival”