Angkor Wat and St Peter’s Basilica

Unexpectedly, three more chapter were written to conclude Sacred Geometry in Ancient Goddess Cultures, on Cambodian temple Angkor Wat and Rome’s St Peter’s Basilica.

Here is a taster of the later chapters.

figure: the punctuation of towers and western outlook. Possibly a funerial building for the king, it could be used as a living observatory and complex counting platform for studying the time periods of the sun, the moon, and even the planetary synods.

Chapter 9 is on the design of Angkor Wat and chapter 10 is on St Peter’s basilica in Rome (see below). Some early articles on these can be accessed on this site, most easily through the search function, tag cloud and tags on this post..

As you can see, my books partly emerge through work presented on this website. This has been an important way of working. And whilst I am providing some ways of working that could be duplicated by others, at its heart, my purpose is to show that the celestial environment of our living planet appears to have been perfectly organized according to a numerical scheme.

My results do not rely on modern techniques yet I have had to avail myself of modern techniques and gadgets to work out what the ancient techniques arrived at over hundreds if not thousands of years.

My basic proposal is that ancient astronomers learned of the pattern of time in the sky by counting days and months between events on the horizon or amongst the fixed stars. Triangles enabled the planetary motions to be compared as ratios between synodic periods.

Continue reading “Angkor Wat and St Peter’s Basilica”

The Metonic Period at Ushtogai Square

If one takes the figure of 940 feet (that is, 286.512 meters) as the side length factorizing 940 gives 20 x 47 and 47 (a prime number) times 5 gives 235 which is the number of lunar months in 19 solar years: the Metonic period. image by Google Earth

This is the larger of three bounding periods for the sun, moon, and earth. The lower boundary is exactly 19 eclipse years, called the Saros eclipse period of 18.03 solar years. . Within that range of 18-19 years lies the moon’s nodal period of 18.618 years, this being the time taken for the two lunar nodes, of the lunar orbit, to travel once backwards around the ecliptic. It is only at these nodal points that eclipses of sun and moon can occur, when both bodies are sitting on the nodes.

The first article on Ushtogai showed how, by daily counting all the tumuli in a special way, the 6800 days of the nodal period would keep a tally in days, to quantify where the nodes were on the ecliptic as well as predicting the lunar maximum and minimum standstills.

It now seems that, if the absolute size of the monument’s perimeter was able to count the 19-year Metonic, not by counting days but rather, counting the 235 lunar months of the Metonic period. The lunar month would then be 16 feet long. And, within that counting, one could also have counted the 223 lunar months between eclipses having the same appearance. The diameter of a circle drawn within the square would then have a diameter of 235 (lunar months) divided by 4 = 58.75 lunar months which, times the 16 feet per month, is the 940 feet of the square’s side length.

Figure 1. The size of Ushtogai Square, side length 940 feet, is 235 x 4 feet, making its perimeter able to count 235 lunar months of 16 feet.

In Cappadocia, present-day Turkey, this type of geometrical usage can be seen within a rock-cut church called Ayvali Kelise, only then in miniature to form a circular apse, just over 100 times smaller! The church was built in the early Christian period (see figure 2).

Figure 2 The Apse of Ayvali Kelise in Cappadocia, which presented the same geometry in miniature. [part of figure 7.5 from Sacred Geometry in Ancient Goddess Cultures.]

The Ushtagai Square has the basic form for the equal perimeter geometry. If so, that would form a tradition at least 10,000 years old. As a counting framework for the 18-19 solar year recurrences of aspects between the the Sun, Moon, Earth, eclipses and nodes the Square appears to be both a tour-de-force in a form of astronomy now largely forgotten.

Figure 3 Showing the circle equal in perimeter to the Ushtagai Square, the size of the Earth (in-circle of diameter 11) and Moon (four circles of diameter 3.)

As an earthwork where tumuli punctuate geometrical lines, it is a highly portable symbol of great time and a highly specific astronomical construction. It was an observatory and also a snapshot within celestial time, built just after the Ice Age had ended.

Alignment of Ushtogai Square to Vega

The Ushtagai Square is angled to fit an invisible three-by-three square aligned to the North Pole. This grid could be to help lay out the square but then why make it angled to the diagonal of the double squares within the grid?

Figure 1. A Google Earth image of Ushtogai from above with yellow lines along its sides conforming to a 3-by-3 square aligned to north. The square sides of the monument obviously follow the angle of the double squares within the grid.

Following on from the first article, for some time I have been looking at northerly alignments within megalithic monuments as a possible siting mechanism for the circumpolar stars.

For example, the Le Menec cromlech in Brittany is a large Type 1 egg that this series of articles explores as having been a sidereal observatory, whose outputs formed The Alignments of Carnac, to the east. Modern observatories use sidereal or star clocks, and the circumpolar stars around the North Pole are such a clock. These stars directly show the rotation of the earth, from which the sidereal day can be tracked. (please use the search box for “sidereal” and “circumpolar” for a range of articles about this)

Monuments such a Gobekli Tepe, that predate the familiar megalithic periods, alignments to the star Vega are particularly interesting: around 12.500 BC, the ice age had a lull and Vega was the pole star. The northern alignment of Gobekli’s enclosures B, C and D, suggest Vega was being tracked there, around 9900 BCE (years before the current era).

Figure 2. A typical T-shaped stone of Enclosure D at Gobekli showing a “vulture” . The star Vega, in the constellation Lyra, was seen as a vulture or “falling one” and, in the mid section, one sees a vulture and a round shape that is probably that star, once Pole Star, but now departed from the celestial North Pole. © DAI, Göbekli Tepe Project for UNESCO.

The Ushtogai Square is thought to be at least 8000 BC and if the above alignment of 26 degrees, for a double square, were used to see Vega above the NW side of the square, then that would need to be around 9200 BCE (according to my planetarium program CyberSky version 5, see figure 3).

Figure 3. The upper area is the north pole and Vega on the celestial earth, looking north. Below this, the earth-coloured panel (north at the top) shows the north-west side of the Square of tumuli as an alignment to Vega in 9200 BCE.

The last ice age ended with a Maximum, but people were soon move around Eurasia: on the steppes, in Ushtogay where nomadism could flourish, and in eastern Turkey at Gobekli Tepe, at the head of the forthcoming Neolithic revolution. Such monuments display an advanced astronomical alignment and counting culture. This makes prehistory a lot more interesting, as to how and why there was such an early interest in matters cosmic.

In January, my new book will be published pushing this story forward. One in a series on such matters, it is called Sacred Geometry in Ancient Goddess Cultures because the ice age tribes were often organized around women and some “goddess” cultures seem to have been very interested in sacred geometry*. Matrilineal tribes had a social structure able to live off the land and with a large natural workforce (an extended family who were not farmers) such groups could achieve monumental works such as the Ushtogai Square.

*Such geometries were studied in my earlier books, Sacred Number and the Lords of Time (2014) and Sacred Geometry: Language of the Angels (2021).

Notes

  1. A previous exploration of the geometry of Ushtogai, onto which my proposed alignment to Vega can be added, is found in this pdf: A massive neolithique geoglyph … orientation … to cardinal directions (on academia.edu) by Howard Crowhurst.
  2. To explore the Ushtogai site, and Kazakhstan in general, you might try Wild Tickets.
  3. Ushtogai can sometimes be written as Ushtogay when searching.

Utility of the Ushtogai Square to count the Nodal Period

Using Google Earth, a large landform was found in Kazakhstan (Dmitriy Dey, 2007); a square 940 feet across with diagonals, made of evenly spaced mounds. We will demonstrate how the square could have counted the lunar nodal period of 6800 days (18.617 solar years)

 images courtesy of Wild Ticket

Counting the Lunar Nodal Period

One can see the side length of the square contains seventeen (17) mounds, with 16 even distances between the mounds. Were one to count each side as 17 mounds, then four times 17 gives 68 which reminds us of the 6800 days in the moon’s nodal period of 18.617 years. If 17 can be multiplied by 100, then one could count the nodal period in days, and to do this one notices that the diagonals have one central space, around which each of four arms are 10 mounds long.

The Ushtogai Square from above, north to the top.

Each side length of 17 mounds forms a triangle to the central space, perhaps for central control, with two sides (left and right) of 10 mounds each. As with our own decimal counting of units and tens (as in 12) there could have been a day marker placed in the center.  On day 1, it was moved to the first mound on the left. Every day, the left marker moves towards the left corner mound. Upon reaching the corner, two things happen.

  1. The day marker returns to the center and,
  2. A ten-day marker then starts its own journey to the right hand corner.

The left-hand day counting would continue on the next day, for ten more days, whereupon the same action, incrementing the ten counter, would mark another ten days in a further step between mounds, towards the right hand corner.

After 100 days, the marker of ten-day periods has reached the right hand corner and a new hundred day marker is deployed, to record hundreds of days per mound. Only after the first 100 days is the hundred marker placed upon the left-hand corner mound (that might have represented 100 days after the maximum standstill of the moon.)

The counting scheme for one quarter of the nodal period, repeated in each quadrant to count 6800 days

All of the above is repeated, slowly moving the hundred-day counter from the left corner to the right, at which time the moon no longer exceeds the solar extremes of summer and winter solstice in its range of rising and setting every orbit of, on average, 27.32166 days.

In conclusion …

There is a very beautiful correspondence between the geometry of Ushtogai and the nodal period of the moon. But in a following article we will explore the parallel meaning of this monument as a counter of lunar months: to use the outer perimeter to study the Metonic and Saros eclipse periods.

There is a second article on Ustogai here.

For more information on this sort of astronomical counting in the prehistoric period, and of the details of the major time periods of the moon and sun,
these can be found in my books,
Sacred Number and the Lords of Time and
Sacred Geometry: Language of the Angels.

The Stonehenge Crop Circle of 2002

One sees most clearly how a single concrete measure such as 58 feet can take the meaning of the design into the numbers required to create it. However, metrology of feet and types of feet can hide the elegance of a design.

photo by Steve Alexander of TemporaryTemples.co.uk

I received Michael Glickman’s Crop Circles: The Bones of God at the weekend and each chapter is a nicely written and paced introduction to a given years worth of crop circles generally in the noughties. The above is the second in proximity to Stonehenge reminding keen croppers of an earlier one. This cicle preceeded the late-season (August) circle at Crooked Soley that I have an analysis of soon to be posted, drawing on Allan Brown’s small book on it.

Glickman’s chapter 10 : Stonehenge Ribbons and Crooked Soley provided a tentative analysis of the Ribbons as having the ends of the ribbons measuring 58 feet. The design was observed as making use of a single half circle building block for most of the emergent six arms emerging from the center. Michael suggested that there were 13 equal units of 58 feet across the structure.

Figure 10.4 Showing thirteen divisions of one of the three diameters of ribbons. photo: Steve Alexander.

From this I was able to observe that clearly the divisions were not equal in size and the white ones were clearly smaller as was the central circle’s diameter. Scanning the picture and placing it in my Visio program, so that a rectangle of 58mm was equal to the diameter of the right hand ribbon end, it was possible to determine that the ratio between these lengths was 5 to 4, or 5/4, from which the shorter white length must be 46.4 feet and that the diameter can be seen as 9 units across, that is 104.4 feet. The unit is 104.4 feet divided by 9 which equals 11.6 feet, which is 10 feet of 1.16 feet, the root reciprocal of the Russian foot of 7/6 feet, that is 7/6 feet divided by 175/176 (= 1.16). Going down the “Russian” root led to the diagram below.

My analysis of Michael Glickman’s figure reveals a span of 580 Russian Feet.

There are parallax errors so I have had to show the ideal designed shortened across the left-hand of the design, but the design has many numerical aspects where each arm is 27 units so that two arms are 54 which, plus the center, gives 58 times 10 equaling 580 Russian feet. But then I noted that 58 feet, divided by 5, gave the unit as 11.6 English feet while 58 feet divides into the 58 unit diameter across the crop circle.

Now we see a set of multiples of 29 are there as numbers {29 58 87 116 145 174 203 232 261 … }. The reciprocal Russian at 1.16 feet and the unit of 11.6 feet are decimal echoes of the number 29. The formula of the Proto Megalithic yard is 87/32 feet and 261/8 inches.

To be continued

One sees most clearly how a single concrete measure such as 58 feet can take the meaning of the design into the numbers required to create it.

Pauli’s Cosmic Dream

above: Wolfgang Pauli, ca. 1924. Wikipedia CC BY 4.0

Renowned psychiatrist Carl Jung had an intellectual friend in Wolfgang Pauli, a leading theoretical scientist in the development of quantum mechanics who had offered (with others) a third perspective to the deterministic physics of Newton and relativistic physics of Einstein. For example, Pauli’s Exclusion Principle explained how sub atomic particles of the same type could be connected to each other (entangled) on the level of the very small.

Dream analysis with Carl Jung opened Pauli up to the inner worlds of alchemy, archetypes, and dreams. Pauli recounted his dreams to Jung who would analyze their symbolism. One dream is of special interest here since it concerned a cosmic clock with two discs with a common center: one vertical and the other horizontal. The vertical disc was blue with a silver lining upon which were 32 divisions and the hand of a clock pointing to a division. The horizontal disc was divided into four differently colored quadrants, surrounded by a golden ring.

above: A visualization of Pauli’s report of his dream of the Cosmic Clock. The black bird would traditionally be a member of the Corvus or Crow family. In the original one sees 32 rings punctuating the outer ring. below: Jane Roberts colored it, noting it resembled Ezekiel’s vision. 

Continue reading “Pauli’s Cosmic Dream”