Developmental Roots below 6

Square roots turn out to have a strange relationship to the fundaments of the world. The square root of 2, found as the diagonal of a unit square, and the square root of 3 of the diametric across a cube; these are the simplest expressions of two and three dimensions, in area and volume. This can be shown graphically as:

The first two roots “open up” the possibilities of
three-dimensional space.
Continue reading “Developmental Roots below 6”

Double squares: Venus and the Golden Mean

The humble square, with side length equal to one unit, is like the number one. It’s area is one square unit and, when we add another identical square to one side, the double square appears. Above right the Egyptian Djed column is shown within a double square. The Djed is the rotating earth which the gods and demons have a tug of war over. This is also a key story in the Indian tradition, called The Churning of the Oceans, where the churning creates both the food of the gods (soma) and every wonderful thing that emerges upon the Earth. In this, the double square symbolized the northern and southern hemispheres of the Earth. The anthropomorphic form Djed shown above has elbows indicative of the Double square.

Figure 1 The churning of the ocean (Samudra Manthan in Sanskrit)

The Djed appears to be the general principle of rotation of, and apparent motion around, the earth.

Continue reading “Double squares: Venus and the Golden Mean”

Parthenon as a New Model of the Meridian

This was published as The Geodetic And Musicological Significance Of The Shorter Side Length Of The Parthenon As Hekatompedon Or ‘Hundred-Footer’ in Music and Deep Memory: Speculations in ancient mathematics, tuning, and tradition, in memoriam Ernest G. McClain. Edited by Bryan Carr and Richard Dumbrill. pub: Lulu. photo: Steve Swayne  for Wikipedia on Parthenon.

This note responds to Kapraff and McClain’s preceding paper, in which they discover a many-faceted musical symbolism in the Parthenon. Specifically,  Ernst  Berger’s  new measurements include the shorter side of the triple pedestal of the monument as an accurate length to represent one second of the double meridian of the earth. By applying a knowledge of ancient metrology, Anne Bulckens’ doctoral derivations of a root foot can resolve to a pygme of 9/8 feet, of which one second of latitude would contain 90 such feet. However, as a ‘hundred footer’, the foot  length  should  then be 81/80 (1.0125) feet, the ratio  of  the syntonic comma. This would indicate a replacement, by Classical times, of the geographical constant of 1.01376 feet  within the model of the earth since the original model, by the late megalithic, assumed that the meridian was exactly half of the mean circumference of the earth. These alternative geographical constants co-incidentally represent the ubiquitous theme in ancient musicology of the transition between Pythagorean and  Just tunings and their respective commas of Pythagorean 1.01364 … (in metrology 1.01376) and syntonic 81/80 (1.0125).

By Classical times the term hekatompedon or ‘hundred-footer’ had evolved, to describe the ideal dimensionality of Greek peristyle temples. One of the earliest, the Heraion of Samos, came to be 100 feet long by the end of the 8th century[1], in contrast to the surface width of the Parthenon’s stylobyte which had been established as in the range 101.141 (Stuart, c.1750) to 101.341 (Penrose in 1888) feet[2].

Recent measurements in 1982 by Ernst Berger[3] found that the top surface of the stylobyte was just over 101.25 feet wide4 and that the most frequently occurring length was 857.6 mm. Anne Bulckens’[5] corresponding foot measure for this would be a step of 2.5 feet, each of 9/8 (1.125) feet, to within
one part in 2500; a foot length called a pygme within historical metrology, after the size of small men first mentioned when Herakles was travelling back from India6. The shorter ends of the Parthenon’s stylobyte would then be 90 such feet across.

However, should the two ends be divided by 100, the required foot length of 101.25 feet becomes a microvariation of the English foot, namely 81/80 (1.0125) feet, a ratio identical with the syntonic comma. This is another ratio crucial to the history of ancient tuning theory; being found between pure Pythagorean tones (9/8) and their counterparts within just tuning (10/9); when string lengths are given specific whole number lengths to specify their pitches intellectually.

1. Hurwit, Jeffrey M., (1987), The Art and Culture of Early Greece, 1100-480 B.C., Cornell: Ithaca, 74-77
2. Berriman, A.E., (1953) Historical Metrology, London:
Dent. IX, 116-120.
3. Berger, E., ed. (1986) Parthenon-Kongress Basel, 2 Vols, Mainz: Philipp von Zabern.
4. an average noted by Berriman, 119.
5. Bulckens, A.M. (1999) The Parthenon’s Main Design Proportion and its Meaning, [Ph.D. Dissertation], Geelong: Deakin University, 269 pp. ; (2001) The Parthenon’s Symmetry in Symmetry: Art and Science (Fifth Interdisciplinary Symmetry Congress and Exhibition of the ISIS-Symmetry), (Sydney, 2001), no. 1-2, pp. 38-41.
6. Philostrates of Lemnos (c. 190 – c. 230 AD) Imagines Heracles among the Pygmies, see Loeb Classical Library

A recent article by Jay Kapraff and Ernest McClain[7] observes that the width of the Parthenon symbolically defined one second of latitude (taking surface lengths as linear fractions of latitude). This implies the double meridian length was known within 0.003% of its modern estimation.

A geodetic symbolism was apparently given to shorter side length of the Parthenon, making it smaller than it would have been if modelled on the circumference of the earth as one 3,600th of one 360th part of the mean earth. If so, this geodetic meaning of the Parthenon can be compared with monuments built two thousand years earlier, such as Stonehenge and the Great Pyramid of Giza, within which the relationship of the mean earth was specified, relative to the polar radius, using the same metrological system.

The ancient model of the earth, recovered[8] by John Neal[9] and John Michell[10], used three different approximations of π to model the distortion of
the rotating planet relative to its mean, or perfectly spherical, size. In that model, the Meridian was assumed to be half the circumference of the mean earth of 44 times 126 (131,383.296) feet or 24,883.2 miles. Had the Parthenon’s builders used this model then its ends would be 101.376 feet in width and one hundredth of this would be a foot of 1.01376 feet, the foot known as the ‘Standard Geographical’ Greek foot[11].

The mean circumference of the earth (24,883.2 miles) and the actual double meridian length (24,859.868 miles) are in the same ratio as the geographical foot of 1.01376 (3168/3125) and 1.0125 feet: the 81/80 foot measure that makes the Parthenon’s 101.25 feet a ‘hundred footer’. It is therefore reasonable to assume that, between the building of Stonehenge and Great Pyramid (by 2,500 B.C.) and the building of the Parthenon (designed by 447 B.C.), a more accurate
measurement of the Meridian had superseded the previous assumption, within the old model, that the Meridian was half the length of the mean earth circumference.

7. The Proportional System of the Parthenon, in preparation for the In Memoriam volume for Ernest McClain (1918-2014)
8. Michell by 1980 and Neal, fully formed, by 2000.
9. Neal, John (2000) All Done With Mirrors, Secret Academy, London.
10. Michell, John (1982) Ancient Metrology, Pentacle Books, Bristol, 1982; (2008 new ed.) Dimensions of Paradise, Inner Traditions: Rochester.

Further to this, one can see how the transition from Pythagorean to just tuning systems[12] is strangely present in the relationship between the mean earth circumference and the actual meridian length, since the geographical constant of 1.01376 is near identical to the Pythagorean comma of 1.0136433 while the (chosen) ratio of 1.0125 is the syntonic comma and this, times 100, is near identical to the actual length of one second of latitude which would be 100 times 1.0128 feet[13], just one third of an inch different from a more
modern result.

The Parthenon ‘Hundred footer’ was able to dimensionally reference one second of the Meridian by having its shorter sides one hundred feet of 1.0125 feet long. Aligned to north, this presented accurate Classical knowledge of the
Meridian’s length. The monument expresses other musicological features via its metrology: the 81/80 foot unit is 125/128 of the Athenian foot of 1.0368 feet, a musical interval called the minor diesis, also found within just intonation and equaling the deficiency of three major thirds to the octave

12 The latter prevalent in other aspects of the monument, see Kappraff, J. and McClain, E.G. (2005: Spring–Fall) The Proportions of the Parthenon: A work of musically inspired architecture, Music in Art: International Journal for Music Iconography, Vol. 30/1–2.
13 A non-harmonic 79/78 feet.

The Approximation of π on Earth

Ï€ is a transcendental ratio existing between a diameter/ radius and circumference of a circle. A circle is an expression of eternity in that the circumference, if travelled upon, repeats eternally. The earths shape would be circular if the planet did not spin. Only the equator is now circular and enlarged, whilst the north and south poles have a shrunken radius and, in pre-history, the shape of the earth’s Meridian between the poles was quantified using approximations of Ï€ as was seen in the post before last. In some respects, the Earth is a designed type of planet which has to have a large moon, 3/11 of the earth’s size and a Meridian of such a size that the diverse biosphere can be created within the goldilocks region of the Sun’s radiance.

It would be impossible to quantify the earth as a physical object without the use of approximations to π, a technique seen as emerging in Crucuno between its dolmen and famous {3 4 5} Rectangle where the 32 lunar months in 945 days was used, through manipulation of proximate numbers to rationalize the lunar month to 27 feet (10 Drusian steps) within which days could be counted using one Iberian foot (of 32/35 feet) as described here and in my Sacred Geometry book.

Continue reading “The Approximation of Ï€ on Earth”

The Broch that Modelled the Earth

Summary

In the picture above [1] the inner profile of the thick-walled Iron-Age broch of Dun Torceill is the only elliptical example, almost every other broch having a circular inner court. Torceill’s essential data was reported by Euan MacKie in 1977 [2]: The inner chamber of the broch is an ellipse with axes nearly 23:25 (and not 14:15). The actual ratio directly generates a metrological difference, between the major and minor axis lengths, of 63/20 feet. When multiplied by the broch’s 40-foot major axis, this π-like yard creates a length of 126 feet which, multiplied again by π as 22/7, generates 396 feet. If each of these feet represented ten miles, this number is an accurate approximation to the mean radius of the Earth, were it a sphere.

The two ratios involved, 22/7 and 63/20, each an approximation to Ï€, become 9.9 (99/100) when they are multiplied together, as an approximation to Ï€ squared.  Figure 1 shows that these two ratios, if 22/7 differently used as its reciprocal 7/22, also generates the ratio between the mean and polar radii of the Earth, since 63/20 x 7/22 = 441/440. The ancient Meridian length could be calculated from 396 when multiplied by using the most accurate rational Ï€ noted by Fibonacci as 864/275. The 396 units, of 10 miles per foot, was a practical distance to have realized in the megalithic without arithmetic, to store the 3960 mile mean radius of the earth, since the mile of 5280 feet is 4/3 of 3960; that is, 396 x 4/3 equals 528, implying that this model was conceived of within a decimal framework but without the base-10 positional notation of arithmetic. We show that the methods of calculation used can only have seen numbers-as-lengths as being composed of factors of just the first five prime numbers {2 3 5 7 11} and that this limitation upon numbers created a metrology in which fractional units of measure could manipulate lengths to multiply and divide them through addition and subtraction of the powers of these primes.

Marc Calhoun’s picture from the Island (picture from his blog)

Contents

  1. Summary
  2. Introduction.
  3. Main Thesis.
  4. Pre-arithmetic Calculation using Powers of {2 3 5 7 11}
  5. Combining Prime Number Composites.
  6. Appendix 1 Extract from Science and Society in Prehistoric Britain.
  7. Appendix 2: Preface: The Metrology of the Brochs.
  8. Metrological Bibliography.
Continue reading “The Broch that Modelled the Earth”

Walking on the Moon

There are plans to walk again on the moon (above is a NASA visualization), but there is a sense in which the surface of the moon belongs to the surface of the earth, since the earth’s circumference is 4 times the mean diameter of the earth, minus the moon’s circumference.

The Earth and Moon were formed out of an early collision which left the two bodies in an unusual relationship to one another, in more ways than one. Here we discuss the diameter (and circumference) of each body as a sphere as being in the ratio 11 to 3. The diameter of the Moon is 2160 miles so that the common unit is 720 miles (the harmonic constant) and the diameter of the spherical mean earth would be 7920 miles.

Continue reading “Walking on the Moon”