Metrology of a Bronze Age Dodecahedron

The Norton Disney Archaeology Group found an example of a “Gallo Roman Dodecahedron”. One of archaeology’s great enigmas,
there are now about 33 known examples in what was Roman occupied Britain.

An Interpretation of its Height

The opposed flat pentagons of a regular duodecagon gives us its height, in this case measured to be 70 mm. Dividing 0.070 meters by 0.3048 gives 0.22965 feet and, times 4, gives a possible type of foot as 0.91864 or 11/12 feet**.

** Where possible, one should seek the rational fraction of the foot, here 11/12, over the decimal measurement which assumed base-10 arithmetic and loses the integer factors at work within the system of ancient foot-based metrology.

The Simplest Likelihood

Continue reading “Metrology of a Bronze Age Dodecahedron”

The Metonic Period at Ushtogai Square

If one takes the figure of 940 feet (that is, 286.512 meters) as the side length factorizing 940 gives 20 x 47 and 47 (a prime number) times 5 gives 235 which is the number of lunar months in 19 solar years: the Metonic period. image by Google Earth

This is the larger of three bounding periods for the sun, moon, and earth. The lower boundary is exactly 19 eclipse years, called the Saros eclipse period of 18.03 solar years. . Within that range of 18-19 years lies the moon’s nodal period of 18.618 years, this being the time taken for the two lunar nodes, of the lunar orbit, to travel once backwards around the ecliptic. It is only at these nodal points that eclipses of sun and moon can occur, when both bodies are sitting on the nodes.

The first article on Ushtogai showed how, by daily counting all the tumuli in a special way, the 6800 days of the nodal period would keep a tally in days, to quantify where the nodes were on the ecliptic as well as predicting the lunar maximum and minimum standstills.

It now seems that, if the absolute size of the monument’s perimeter was able to count the 19-year Metonic, not by counting days but rather, counting the 235 lunar months of the Metonic period. The lunar month would then be 16 feet long. And, within that counting, one could also have counted the 223 lunar months between eclipses having the same appearance. The diameter of a circle drawn within the square would then have a diameter of 235 (lunar months) divided by 4 = 58.75 lunar months which, times the 16 feet per month, is the 940 feet of the square’s side length.

Figure 1. The size of Ushtogai Square, side length 940 feet, is 235 x 4 feet, making its perimeter able to count 235 lunar months of 16 feet.

In Cappadocia, present-day Turkey, this type of geometrical usage can be seen within a rock-cut church called Ayvali Kelise, only then in miniature to form a circular apse, just over 100 times smaller! The church was built in the early Christian period (see figure 2).

Figure 2 The Apse of Ayvali Kelise in Cappadocia, which presented the same geometry in miniature. [part of figure 7.5 from Sacred Geometry in Ancient Goddess Cultures.]

The Ushtagai Square has the basic form for the equal perimeter geometry. If so, that would form a tradition at least 10,000 years old. As a counting framework for the 18-19 solar year recurrences of aspects between the the Sun, Moon, Earth, eclipses and nodes the Square appears to be both a tour-de-force in a form of astronomy now largely forgotten.

Figure 3 Showing the circle equal in perimeter to the Ushtagai Square, the size of the Earth (in-circle of diameter 11) and Moon (four circles of diameter 3.)

As an earthwork where tumuli punctuate geometrical lines, it is a highly portable symbol of great time and a highly specific astronomical construction. It was an observatory and also a snapshot within celestial time, built just after the Ice Age had ended.

Parthenon as a New Model of the Meridian

This was published as The Geodetic And Musicological Significance Of The Shorter Side Length Of The Parthenon As Hekatompedon Or ‘Hundred-Footer’ in Music and Deep Memory: Speculations in ancient mathematics, tuning, and tradition, in memoriam Ernest G. McClain. Edited by Bryan Carr and Richard Dumbrill. pub: Lulu. photo: Steve Swayne  for Wikipedia on Parthenon.

This note responds to Kapraff and McClain’s preceding paper, in which they discover a many-faceted musical symbolism in the Parthenon. Specifically,  Ernst  Berger’s  new measurements include the shorter side of the triple pedestal of the monument as an accurate length to represent one second of the double meridian of the earth. By applying a knowledge of ancient metrology, Anne Bulckens’ doctoral derivations of a root foot can resolve to a pygme of 9/8 feet, of which one second of latitude would contain 90 such feet. However, as a ‘hundred footer’, the foot  length  should  then be 81/80 (1.0125) feet, the ratio  of  the syntonic comma. This would indicate a replacement, by Classical times, of the geographical constant of 1.01376 feet  within the model of the earth since the original model, by the late megalithic, assumed that the meridian was exactly half of the mean circumference of the earth. These alternative geographical constants co-incidentally represent the ubiquitous theme in ancient musicology of the transition between Pythagorean and  Just tunings and their respective commas of Pythagorean 1.01364 … (in metrology 1.01376) and syntonic 81/80 (1.0125).

By Classical times the term hekatompedon or ‘hundred-footer’ had evolved, to describe the ideal dimensionality of Greek peristyle temples. One of the earliest, the Heraion of Samos, came to be 100 feet long by the end of the 8th century[1], in contrast to the surface width of the Parthenon’s stylobyte which had been established as in the range 101.141 (Stuart, c.1750) to 101.341 (Penrose in 1888) feet[2].

Recent measurements in 1982 by Ernst Berger[3] found that the top surface of the stylobyte was just over 101.25 feet wide4 and that the most frequently occurring length was 857.6 mm. Anne Bulckens’[5] corresponding foot measure for this would be a step of 2.5 feet, each of 9/8 (1.125) feet, to within
one part in 2500; a foot length called a pygme within historical metrology, after the size of small men first mentioned when Herakles was travelling back from India6. The shorter ends of the Parthenon’s stylobyte would then be 90 such feet across.

However, should the two ends be divided by 100, the required foot length of 101.25 feet becomes a microvariation of the English foot, namely 81/80 (1.0125) feet, a ratio identical with the syntonic comma. This is another ratio crucial to the history of ancient tuning theory; being found between pure Pythagorean tones (9/8) and their counterparts within just tuning (10/9); when string lengths are given specific whole number lengths to specify their pitches intellectually.

1. Hurwit, Jeffrey M., (1987), The Art and Culture of Early Greece, 1100-480 B.C., Cornell: Ithaca, 74-77
2. Berriman, A.E., (1953) Historical Metrology, London:
Dent. IX, 116-120.
3. Berger, E., ed. (1986) Parthenon-Kongress Basel, 2 Vols, Mainz: Philipp von Zabern.
4. an average noted by Berriman, 119.
5. Bulckens, A.M. (1999) The Parthenon’s Main Design Proportion and its Meaning, [Ph.D. Dissertation], Geelong: Deakin University, 269 pp. ; (2001) The Parthenon’s Symmetry in Symmetry: Art and Science (Fifth Interdisciplinary Symmetry Congress and Exhibition of the ISIS-Symmetry), (Sydney, 2001), no. 1-2, pp. 38-41.
6. Philostrates of Lemnos (c. 190 – c. 230 AD) Imagines Heracles among the Pygmies, see Loeb Classical Library

A recent article by Jay Kapraff and Ernest McClain[7] observes that the width of the Parthenon symbolically defined one second of latitude (taking surface lengths as linear fractions of latitude). This implies the double meridian length was known within 0.003% of its modern estimation.

A geodetic symbolism was apparently given to shorter side length of the Parthenon, making it smaller than it would have been if modelled on the circumference of the earth as one 3,600th of one 360th part of the mean earth. If so, this geodetic meaning of the Parthenon can be compared with monuments built two thousand years earlier, such as Stonehenge and the Great Pyramid of Giza, within which the relationship of the mean earth was specified, relative to the polar radius, using the same metrological system.

The ancient model of the earth, recovered[8] by John Neal[9] and John Michell[10], used three different approximations of π to model the distortion of
the rotating planet relative to its mean, or perfectly spherical, size. In that model, the Meridian was assumed to be half the circumference of the mean earth of 44 times 126 (131,383.296) feet or 24,883.2 miles. Had the Parthenon’s builders used this model then its ends would be 101.376 feet in width and one hundredth of this would be a foot of 1.01376 feet, the foot known as the ‘Standard Geographical’ Greek foot[11].

The mean circumference of the earth (24,883.2 miles) and the actual double meridian length (24,859.868 miles) are in the same ratio as the geographical foot of 1.01376 (3168/3125) and 1.0125 feet: the 81/80 foot measure that makes the Parthenon’s 101.25 feet a ‘hundred footer’. It is therefore reasonable to assume that, between the building of Stonehenge and Great Pyramid (by 2,500 B.C.) and the building of the Parthenon (designed by 447 B.C.), a more accurate
measurement of the Meridian had superseded the previous assumption, within the old model, that the Meridian was half the length of the mean earth circumference.

7. The Proportional System of the Parthenon, in preparation for the In Memoriam volume for Ernest McClain (1918-2014)
8. Michell by 1980 and Neal, fully formed, by 2000.
9. Neal, John (2000) All Done With Mirrors, Secret Academy, London.
10. Michell, John (1982) Ancient Metrology, Pentacle Books, Bristol, 1982; (2008 new ed.) Dimensions of Paradise, Inner Traditions: Rochester.

Further to this, one can see how the transition from Pythagorean to just tuning systems[12] is strangely present in the relationship between the mean earth circumference and the actual meridian length, since the geographical constant of 1.01376 is near identical to the Pythagorean comma of 1.0136433 while the (chosen) ratio of 1.0125 is the syntonic comma and this, times 100, is near identical to the actual length of one second of latitude which would be 100 times 1.0128 feet[13], just one third of an inch different from a more
modern result.

The Parthenon ‘Hundred footer’ was able to dimensionally reference one second of the Meridian by having its shorter sides one hundred feet of 1.0125 feet long. Aligned to north, this presented accurate Classical knowledge of the
Meridian’s length. The monument expresses other musicological features via its metrology: the 81/80 foot unit is 125/128 of the Athenian foot of 1.0368 feet, a musical interval called the minor diesis, also found within just intonation and equaling the deficiency of three major thirds to the octave

12 The latter prevalent in other aspects of the monument, see Kappraff, J. and McClain, E.G. (2005: Spring–Fall) The Proportions of the Parthenon: A work of musically inspired architecture, Music in Art: International Journal for Music Iconography, Vol. 30/1–2.
13 A non-harmonic 79/78 feet.

π and the Megalithic Yard

The surveyor of megalithic monuments in Britain, Alexander Thom (1894 – 1985), thought the builders had a single measure called the Megalithic Yard which he found in the geometry of the monuments when these were based upon whole number geometries such as Pythagorean triangles. His first estimate was around 2.72 feet and his second and final was around 2.722 feet. I have found the two megalithic yards were sometimes 2.72 feet because the formula for 272/100 = 2.72 involved the prime number 17 as 8 x 17/ 100, and this enabled the lunar nodal period of 6800 days to be modelled and and the 33 year “solar hero” periods to be modelled, since these periods both involve the prime number 17 as a factor. In contrast, Thom’s final megalithic yard almost certainly conformed to ancient metrology within the Drusian module in which 2.7 feet times 126/125 equals 2.7216 feet, this within Thom’s error bars for his 2.722 feet as larger than 2.72 feet.

This suggests Thom was sampling more than one megalithic yard in different regions or employed for different uses. Neal [2000] found for Tom’s statistical data set having peaks corresponding to the steps of different modules and variations in ancient metrology, such as the Iberian with root 32/35 feet and the Sumerian with root 12/11 feet. It is only when you countenance the presence of prime numbers within metrological units that one breaks free of the inevitably weak state of proof as to what ancient units of measure actually were and, more importantly, why they were the exact values they were and further, how they came to be varied within their modules. However, the megalithic yard of 2.72 appears to outside the system in embodying the prime number 17 for the specific purpose of counting longer term periods which themselves embody that prime number.

The discipline of using only the first five primes {2 3 5 7 11} must have been accompanied by the perception that only if primes were dealt with could certain ends be served. This is crystal clear when we come to musical ratios in which the harmonic primes alone are used of {2 3 5} with an occasional “passenger” of the prime {7} as in 5040 which is 7 x 720, the harmonic constant.

Using 2.72 feet to count the Nodal Period

The first remarkable characteristic of 2.72 feet is that 8 x 17 in the numerator means that the approximation to π of 25/8 = 3.125 can, in (conceptually) multiplying a diameter, provide an image of 25 units on the circumference of a stone circle. For example a diameter of 2 MY would suggest 17 MY on the circumference, which is quite remarkable. Further to this, we know that the 6800 days of nodal cycle is factored as 17 x 400 and that the MY was shown (acceptably) to have been made up of 40 digits (in conformance to the general tradition within metrology that there are 16 digits per foot and 40 for a step of 2.5 feet, which a MY traditionally is). The circumference of 17 MY is then 17 x 40 digits which means that a diameter of 20 MY would give a circumference of 17 x 400 digits equalling 6800 digits as a countable circumference in digits per day.

This highlights how prime number factors played a role, in the absence of arithmetical methods, in solving the astronomical problems faced by the late stone age when counting time periods in days.

Working with Prime Numbers

Wikipedia diagram by David Eppstein :
This is an updated text from 2002, called “Finding the Perfect Ruler”

Any number with limited “significant digits” can be and should be expressed as a product of positive and negative powers of the prime numbers that make it up. For example, 23.413 and 234130 can both be expressed as an integer, 23413, multiplied or divided by powers of ten.

What Primes are

Primes are unique and any number must be prime itself or be the product of more than one prime. Having no factors, prime numbers are odd and cannot be even since the number 2 creates all the even numbers, meaning half of the ordinals are not prime once two, the first “number” as such, emerges.

Each number can divide one (or any other number) into that number of parts. In the case of three (fraction 1/3) only one in three higher ordinal numbers (every third after three) will have three in it and hence yield an integer when three divides it.

Four is the first repetition of two (fraction ½) but also the first square number, which introduces the first compound number, the geometry of squares and the notion of area.

Ancient World Maths and Written Language

The products of 2 and 3 give 6, 12, etc., and the perfect sexagesimal like 60, 360 were combined with 2 and 5, i.e. 10, to create the base 60, with 59 symbols and early ancient arithmetic, in the bronze age that followed the megalithic and Neolithic periods.

Continue reading “Working with Prime Numbers”

Geometry 6: the Geometrical AMY

By 2016 it was already obvious that the lunar month (in days) and the PMY, AMY and yard (in inches) had peculiar relationships involving the ratio 32/29, shown above. This can now be explained as a manifestation of day-inch counting and the unusual numerical properties of the solar and lunar year, when seen using day-inch counting.

It is hard to imagine that the English foot arose from any other process than day-inch counting; to resolve the excess of the solar year over the lunar year, in three years – the near-anniversary of sun and moon. This created the Proto Megalithic Yard (PMY) of 32.625 day-inches as the difference.

Figure 1 The three solar year count’s geometrical demonstration of the excess in length of 3 solar years over 3 lunar years as the 32.625 day-inch PMY.

A strange property of N:N+1 right triangles can then transform this PMY into the English foot, when counting over a single lunar and solar year using the PMY to count months.

The metrological explanation

Continue reading “Geometry 6: the Geometrical AMY”