Counting the Moon: 32 in 945 days

One could ask “if I make a times table of 29.53059 days, what numbers of lunar months give a nearly whole number of days?”. In practice, the near anniversary of 37 lunar months and three solar years contains the number 32 which gives 945 days on a metrological photo study I made of Le Manio’s southern curb (kerb in UK) stones, where 32 lunar months in day-inches could be seen to be 944.97888 inches from the center of the sun gate. This finding would have allowed the lunar month to be approximated to high accuracy in the megalithic of 4000 BC as being 945/32 = 29.53125 days.

Silhouette of day-inch photo survey after 2010 Spring Equinox Quantification of the Quadrilateral.

One can see above that the stone numbered 32 from the Sun Gate is exactly 32/36 of the three lunar years of day-inch counting found indexed in the southern curb to the east (point X). The flat top of stone 36 hosts the end of 36 lunar months (point Q) while the end of stone 37 locates the end of three solar years (point Q’). If that point is the end of a rope fixed at point P, then arcing that point Q’ to the north will strike the dressed edge of point R, thus forming Robin Heath’s proposed Lunation Triangle within the quadrilateral as,

points P – Q – R !

In this way, the numerical signage of the Southern Curb matches the use of day-inch counting over three years while providing the geometrical form of the lunation triangle which is itself half of the simpler geometry of a 4 by 1 rectangle.

The key additional result shows that 32 lunar months were found to be, by the builders (and then myself), equal to 945 days (try searching this site for 945 and 32 to find more about this key discovery). Many important numerical results flow from this.

Counting the Moon: Two equals 59 days

Above: Title Slide of my 2015 Lecture

Counting the lunar month has a deep history, reaching right into prehistory. Firstly, how does one find a phenomenon that gives a whole number of days. Its actual length is now known to be 29.53059 days, and to give a whole number just two lunar months gives 59 days, leaving just 1.8 days too little. But never mind, for the stone age this looks promising but how can one observe the moon at a fixed point and which phase is best to count.

Within a day, before or after the full moon, the Moon looks pretty full, changing little and offering no decisive moment between to count between two full moons. For this reason, a few prehistoric bones give clues to their method which involved counting days with some mark representing the Moon’s phase. This led to the sickle/cresent marks to left “(” or right “)” and between these a round mark “O” and dashes of dark or invisible moon “-“. These are what Alexander Marshack saw in the Albard Plaque, carved on a flat bone from a midden:

Figure 1 (left) Alexander Marshack investigating marked bones in Europe and a crucial interpretation of a 30,000 year old bone as a double lunar month of counting. From my 2015 lecture in Glastonbury about my work prior to Sacred Number and the Lords of Time in 2014.

Marshack demonstrated plausible evidence that consecutive day marks were used in the stone age, stylised to indicate lunar phase within a pattern recognizing that two lunar months formed a recurrent structure in time in a whole number of days, namely 58 days. The utility of the calendric device was that the cycle could be visualized as a whole, making the plaque an icon of both knowledge and meaning. This could be shared but also gave the possessor of this small bone, a power to predict when hunting is possible in lighter nights the light cycle of the moon. In addition, the moon’s phase locates the location of the sun and how many hours were left before the dawn. The bone was an overview of a daily process during most of which the moon is visible by night and day.

In following posts I look at many other ways to count the month, based on longer counts and also look at where in the lunar phases one can best start and stop counting.

You may like to watch my lecture at Megalithomania
(which starts with an ad you may skip).

Inside Time

There are two things we can count in this world, one is the number of objects on the Earth and the other is the number of time periods between events in the Sky.

photo: The Moon, with Jupiter and Mars, on 11th January 2018. (see end for interpretation)

Objects are counted in an extensive way, from one to an almost infinite number, the count extending with each addition (or multiplication) of a population.

Time periods appear similar but in fact they emanate from measurable recurrences, such as phases of the moon, and these derive from the behaviour of celestial objects as they divide into each other.

For instance, the unit called the day is created by the rotation of the earth relative to the Sun and the lunar month by its orbit around the Earth relative to the Sun, and so on.

Thus, time originally came from the sky. Furthermore, it largely came from the zodiacal band of stars surrounding the Earth within which the planets, Sun and Moon progress eastwards. The Earth’s own orbital motion is superimposed upon those of the other planets and the inner planets (Mercury and Venus) also appear to orbit a Sun that appears to orbit the Earth once a year.

The zodiacal band is naturally divided up into a number of constellations or stars and about three thousand years ago it became popular to follow the Sun throughout the year into 12 constellations whilst the Moon tends to create 27 or 28 stars (nakshatras) where the Moon might sit on a given evening. When the moon is illuminated by the sun, the primordial month has 29 1/2 days and twelve such in less than a year hence perhaps first defining the 12-ness of our months within the year.

Continue reading “Inside Time”

The Metonic Period at Ushtogai Square

If one takes the figure of 940 feet (that is, 286.512 meters) as the side length factorizing 940 gives 20 x 47 and 47 (a prime number) times 5 gives 235 which is the number of lunar months in 19 solar years: the Metonic period. image by Google Earth

This is the larger of three bounding periods for the sun, moon, and earth. The lower boundary is exactly 19 eclipse years, called the Saros eclipse period of 18.03 solar years. . Within that range of 18-19 years lies the moon’s nodal period of 18.618 years, this being the time taken for the two lunar nodes, of the lunar orbit, to travel once backwards around the ecliptic. It is only at these nodal points that eclipses of sun and moon can occur, when both bodies are sitting on the nodes.

The first article on Ushtogai showed how, by daily counting all the tumuli in a special way, the 6800 days of the nodal period would keep a tally in days, to quantify where the nodes were on the ecliptic as well as predicting the lunar maximum and minimum standstills.

It now seems that, if the absolute size of the monument’s perimeter was able to count the 19-year Metonic, not by counting days but rather, counting the 235 lunar months of the Metonic period. The lunar month would then be 16 feet long. And, within that counting, one could also have counted the 223 lunar months between eclipses having the same appearance. The diameter of a circle drawn within the square would then have a diameter of 235 (lunar months) divided by 4 = 58.75 lunar months which, times the 16 feet per month, is the 940 feet of the square’s side length.

Figure 1. The size of Ushtogai Square, side length 940 feet, is 235 x 4 feet, making its perimeter able to count 235 lunar months of 16 feet.

In Cappadocia, present-day Turkey, this type of geometrical usage can be seen within a rock-cut church called Ayvali Kelise, only then in miniature to form a circular apse, just over 100 times smaller! The church was built in the early Christian period (see figure 2).

Figure 2 The Apse of Ayvali Kelise in Cappadocia, which presented the same geometry in miniature. [part of figure 7.5 from Sacred Geometry in Ancient Goddess Cultures.]

The Ushtagai Square has the basic form for the equal perimeter geometry. If so, that would form a tradition at least 10,000 years old. As a counting framework for the 18-19 solar year recurrences of aspects between the the Sun, Moon, Earth, eclipses and nodes the Square appears to be both a tour-de-force in a form of astronomy now largely forgotten.

Figure 3 Showing the circle equal in perimeter to the Ushtagai Square, the size of the Earth (in-circle of diameter 11) and Moon (four circles of diameter 3.)

As an earthwork where tumuli punctuate geometrical lines, it is a highly portable symbol of great time and a highly specific astronomical construction. It was an observatory and also a snapshot within celestial time, built just after the Ice Age had ended.

Origins of the Olmec/Maya Number Sciences

ABOVE: Stela C from Tres Zapotes roughly rebuilt by Ludovic Celle and based on a drawing by Miguel Covarrubias.

Introduction

The policy of archaeology regarding the Maya and their root progenitor the Olmec (1500 BCE onwards) is that its cultural innovations were made within Mexico alongside an agrarian revolution of the three sisters, namely squash, maize (“corn”), and climbing beans. This relationship of agriculture to civilizing skills then reads like the Neolithic revolution in Mesopotamia after 4000 BCE, where irrigation made the fertile loam able to absorb agricultural innovations from the northern golden triangle leading to writing, trade, city states, religion, arithmetic and so on. However, the idea that the ancient near east or India could have been an influence through ocean conveyors, of currents and trade winds, has never been accepted when proposed. Yet there are good reasons to think this since the astronomy and monumentalism of the pre-Columbian Mexican civilizations has precedents in the ancient near east and other locations.

The timing of the Olmec and the strangeness of immediately building sacred cities with an almost captive population of around 10,000 people, such as La Venta and San Lorenzo, with strong Jaguar imagery and practices, implies a cultic basis was present from the beginning. And it is now looking likely that the ancient near east was similarly prefigured, not just by agriculture but also by know how involving numbers for the building of sacred buildings with astronomical aspects – a tradition that goes back at least to the megalithic of the Atlantic seaboard of Europe.

Since Columbus, the native populations of North and South America have been largely displaced or marginalized. It may be for this reason that the notion that people from an advanced population had initiated the Olmec civilization requires a high, possibly impossible, level of proof. This Isolationism***, perhaps to avoid “adding insult to injury”, is against the Olmec having derived from the Old World, where the historical records are not that much better. The Olmec origin date is around the time of the quite sudden collapse of the Bronze Age in the Mediterranean around 1200 BCE. And the Olmec, Maya and Aztec appear to have had a definite myth concerning someone called Quetzelcoatl bringing civilizing skills to found their culture, though their culture was also seen as arising from a group of seven underground caves.

***The opposite of Diffusionism: Diffusionism is an anthropological school of thought, was an attempt to understand the distribution of culture in terms of the origin of culture traits and their spread from one society to another. Versions of diffusionist thought included the conviction that all cultures originated from one culture center (heliocentric diffusion); the more reasonable view that cultures originated from a limited number of culture centers (culture circles); and finally the notion that each society is influenced by others but that the process of diffusion is both [subject to chance] and arbitrary . read more

Long Counts and The LUNAR Calendar

Having sketched this background, this article will explore a strange coincidence between the calendrical origins of the Megalithic in Brittany, of a 36 lunar month, 3 lunar year calendar, and the 18 month calendar found in the some of the later Olmec Great Counts, called after the Supplementary Glyphs appended to record the local time in an 18 lunar month calendar. The correlation between long counts and the supplementary data has been invaluable since the long counts can be ambiguous between one or more possible dates but we can predict the sun and moon that far back can compare the glyphs with the alternative dates. Counts have also been found that were eclipses of the sun or moon, resolving a given long count date. It is therefoe interesting to compare the two calendars using the geometrical fact that 36 lunar months is both 2 x 18, 4 x 9 and 3 x 12 since 36 is 4 x 3 x3.

The implication is that the megalithic calendar over three years, which was based upon noticing that three solar years was the diagonal of a four square triangle whose side length is three lunar years, appears to have resulted in an Olmec/Maya calendar in which each square is 9 lunar months. As was noted in previous books (2004, 2016, 2018), the range 9 to 18 years contains a single lunar month {12}, the Jupiter synod {13.5}, the Saturn synod {12.8} and the Uranus synod {12.5}. This octave range between 9 and 2 x 9 = 18 was therefore possible to manifest as a Mexican city design (Teotihuacan) and as the Parthenon of Athens. A number of other examples can be found as one of the proposed major models used from the megalithic onwards, as discussed in Sacred Number: Language of the Angels (2021).

Story of Three Similar Triangles

first published on 24 May 2012,

Figure 1 Robin Heath’s original set of three right angled triangles that exploited the 3:2 points to make intermediate hypotenuses so as to achieve numerically accurate time lengths in units of lunar or solar months and lunar orbits.

Interpreting Lochmariaquer in 2012, an early discovery was of a near-Pythagorean triangle with sides 18, 19 and 6. This year (2018) I found that triangle as between the start of the Erdevan Alignments near Carnac. But how did our work on cosmic N:N+1 triangles get started?

Robin Heath’s earliest work, A Key to Stonehenge (1993) placed his Lunation Triangle within a sequence of three right-angled triangles which could easily be constructed using one megalithic yard per lunar month. These would then have been useful in generating some key lengths proportional to the lunar year:  

  • the number of lunar months in the solar year,
  • the number of lunar orbits in the solar year and 
  • the length of the eclipse year in 30-day months. 

all in lunar months. These triangles are to be constructed using the number series 11, 12, 13, 14 so as to form N:N+1 triangles (see figure 1).

n.b. In the 1990s the primary geometry used to explore megalithic astronomy was N:N+1 triangles, where N could be non-integer, since the lunation triangle was just such whilst easily set out using the 12:13:5 Pythagorean triangle and forming the intermediate hypotenuse to the 3 point of the 5 side. In the 11:12 and 13:14 triangles, the short side is not equal to 5.

Continue reading “Story of Three Similar Triangles”